Publications
- Gibbsian fields associated to exponentially decreasing
Annales de l'Institut Henri Poincaré 1999, vol 35 n°3, pages 387-415. Mathscinet Résumé - Asymptotic behaviour of Gaussian processes with integral representation
Stochastic Processes and their Applications 2000, vol 89 n°2, pages 287-303. Mathscinet Résumé - Infinite dimensional dynamics associated to quadratic Hamiltonians
Markov Processes and Related Fields 2000, vol 6 n° 2, pages 205-237. Mathscinet Résumé - Limit theorems for the painting of graphs by clusters
European Series in Applied and Industrial Mathematics - Probability and Statistics (ESAIM-PS) 2001, vol 5, pages 105-118. Mathscinet Résumé - Harmonic oscillators on an Hilbert space: a Gibbsian approach
Potential Analysis 2002, vol 17 n° 1, pages 65-88. Mathscinet Résumé - Percolation transition for some excursion sets
Electronic Journal of Probability 2004, vol 9 paper n° 10, pages 255-292. Mathscinet Résumé - Asymptotic shape for the chemical distance and first-passage percolation on the infinite Bernoulli cluster
en collaboration avec Régine Marchand
European Series in Applied and Industrial Mathematics - Probability and Statistics (ESAIM-PS) 2004, vol 8, pages 169-199. Mathscinet Résumé - Coexistence in two-type first-passage percolation models
en collaboration avec Régine Marchand
Annals of Applied Probability 2005, Vol. 15, No. 1A, pages 298-330. Mathscinet Résumé - Central Limit Theorems for the Potts model
Mathematical Physics Electronic Journal 2005, Vol. 11, paper n° 4. (27p) Mathscinet Résumé - Competition between growths governed by Bernoulli Percolation
en collaboration avec Régine Marchand
Markov Processes and Related Fields 2006, vol 12 n° 4, pages 695-734. Mathscinet Résumé - Large deviations for the chemical distance in supercritical Bernoulli percolation
en collaboration avec Régine Marchand
Annals of Probability 2007, vol 35 n° 3, pages 833-866. Mathscinet Résumé - First-passage competition with different speeds: positive density for both species is impossible
en collaboration avec Régine Marchand
Electronic Journal of Probability 2008, vol 13 paper n° 70, pages 2118-2159. Mathscinet
Consider two epidemics whose expansions on \(\mathbb{Z}^d\) are governed by two families of passage times that are distinct and stochastically comparable. We prove that when the weak infection survives, the space occupied by the strong one is almost impossible to detect. Particularly, in dimension two, we prove that one species finally occupies a set with full density, while the other one only occupies a set of null density. Furthermore, we observe the same fluctuations with respect to the asymptotic shape as for the weak infection evolving alone. By the way, we extend the Häggström-Pemantle non-coexistence result "except perhaps for a denumerable set" to families of stochastically comparable passage times indexed by a continuous parameter. - Capacitive flows on a 2D random net
Annals of Applied Probability 2009, vol 19 n° 2, pages 641-660. Mathscinet Résumé - Moderate deviations for the chemical distance in Bernoulli percolation
en collaboration avec Régine Marchand
Alea 2010, vol 7, pages 171-191. Mathscinet Résumé - Asymptotic shape for the contact process in random environment
en collaboration avec Régine Marchand
Annals of Applied Probability 2012, vol 22 n° 4, pages 1362-1410 Mathscinet Résumé - Bacterial persistence: a winning strategy?
en collaboration avec Régine Marchand Rinaldo Schinazi
Markov Processes and Related Fields 2012, vol 18 n° 4, pages 639-650 Mathscinet Résumé - The critical branching random walk in a random environment dies out
en collaboration avec Régine Marchand
Electronic Communications in Probability 2013, vol 18 article n° 9, pages 1-15. Mathscinet Résumé - Large deviations for the contact process in random environment
en collaboration avec Régine Marchand
Annals of Probability 2014, vol 42 n° 4, pages 1438-1479. Mathscinet Résumé - Growth of a population of bacteria in a dynamical hostile environment
en collaboration avec Régine Marchand
Advances in Applied Probability 2014, vol 46 n°3, pages 661-686. Mathscinet Résumé - Les lois Zéta pour l'arithmétique
Quadrature 2015, Avril-mai-juin, n°96, pages 10-18 Mathscinet Résumé - Continuity of the asymptotic shape of the supercritical contact process
en collaboration avec Régine Marchand Marie Théret
Electronic Communications in Probability 2015, vol 20 article n° 92, pages 1-11. Résumé - The number of open paths in oriented percolation
en collaboration avec Régine Marchand Jean-Baptiste Gouéré
Annals of Probability 2017, vol 45 n° 6A, pages 4071-4100. Mathscinet Résumé - Continuity of the time and isoperimetric constants in supercritical percolation
en collaboration avec Régine Marchand Eviatar Procaccia Marie Théret
Electronic Journal of Probability 2017, vol 22 article n° 78, 35 pp Mathscinet Résumé - Does Eulerian percolation on \(\mathbb{Z}^2\) percolate?
en collaboration avec Régine Marchand Irene Marcovici
Alea 2018, vol 15 article 13, pages 279-294. Résumé - Percolation and first-passage percolation on oriented graphs
en collaboration avec Régine Marchand
Electronic Communications in Probability 2021, vol 26, paper no. 50, pages 1-14 Résumé - A Central Limit Theorem for the number of descents and some urn models
Markov Processes and Related Fields 2021, vol 27, no 5, pages 789-801 Résumé - A simple master Theorem for discrete divide and conquer recurrences
North-Western European Journal of Mathematics 2022, vol 8, pages 91-101 Résumé
Prépublications
- Growth of a population of bacteria in a dynamical hostile environment
en collaboration avec Régine Marchand
preprint ArXiV: q-bio & math.PR/1010.4618 HAL: 00528471 - A simple master Theorem for discrete divide and conquer recurrences
preprint ArXiV: math.CA/1902.10600 HAL: hal-2049382 - Probabilistic proof for non-survival at criticality: the Galton-Watson process and more
preprint ArXiv: math.PR/2202.00256 HAL: hal-03546828
La plupart de mes preprints récents est également disponible sur ArXiv. Une maniàre facile de déposer des preprints sur ArXiv est de passer par le logiciel du CNRS HAL.
Si vous voulez lire un de mes articles qui n'est pas téléchargeable, envoyez-moi un mail.