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Abstract

We study here R%_valued gradient diffusions associated to quadratic inter-
actions. We establish that each each Gaussian Gibbs measure associated to
this interaction can be obtained as limit in time of the solution of the linear
diffusion for a set of initial deterministic conditions which we describe. Thus
the absence of phase transition corresponds to the ergodicity of the system.
Moreover, we study the influence of a phase transition on the speed of con-
vergence. Finally, we prove that the invariant measures for these gradient
diffusions are exactly the associated Gibbs measures.
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Introduction

The study of lattice random fields with given conditional Gaussian dis-
tributions was initiated in 1966 by Dobrushin, who built mathematical fun-
dations for the theory of Gibbs measures. In 1980, he proved that these
measures are obtained as mixture of Gaussian fields with suitable covariance
and mean value. At the same time, the work of Glauber for discrete spin
systems stimulated the study of connections between infinite gradient type
stochastic differential equations and lattice Gibbs measures (see Royer [23]
). The challenge of statistical mechanicians is to identify the three following
sets : Gibbs measures, reversible measures, and stationary measures for the
associated gradient dynamics. It is also interesting to get some informations
about the asymptotic behaviour of the dynamics.

Nowadays, one can assure the identification between reversible measures
of infinite-dimensional diffusions and Gibbs measures : the pioneer work has
been performed by Doss and Royer [8], and, more recently, Cattiaux, Reelly
and Zessin |4] have used a new approch based on the study of Gibbs states
on the trajectory space C[O,T]Zd. But the conjecture that the stationary
measures under gradient dynamics are Gibbs is unfortunately yet far from
completeness : Holley and Strook [15] studied a special class of symmetric
diffusion processes on the denumerable product of torus U?* and Fritz [10]
obtained results for translation-invariant measures and some superstable in-
teractions on the one or two dimensional lattice, but without intersection
with the Gaussian case.

In spite of the fact that the gradient dynamics associated to quadratic
interactions are linear ones, the actual knowledge leaves unsolved the asymp-
totic behaviour for nonzero initial conditions in case of phase transition : it
is then one of our new results, presented in this paper — we will see that
in the Gaussian case, phase transition and absence of spectral gap occurs
simultaneously.

The first section presents the technical background of our work : we in-
troduce the diffusion equation, the state space in which the process lives and
assumptions satisfied by the potential. We show existence and uniqueness
of the linear diffusion equation in the appropriate space and compute the
covariance. In section 2, we study the time asymptotic behaviour of the solu-
tion. We prove that every extremal Gibbs measure can be obtained as a limit
of the system in infinite time for a deterministic initial condition : we exhibit
a subset of the domain of attraction and compute the speed of convergence.
In the last section, we prove that every stationary measure for the gradient
linear dynamics is a Gibbs measure.



1 Framework

1.1 The diffusion equation and its state space

We denote by W; a family (W}),cza of independent real Brownian motions
defined on a probability space (€2, F, P). We consider the filtration (F;)i>o
where F; is the complete o-algebra generated by the W! with i € Z? and
0<s<t.

When M is a manifold and E a linear topological space, we denote by
Ck(M, E) the set of map from M to E with continuous derivatives of order
k. C(M, E) is the set of continuous map from M to E.

We are interested in the stochastic differential system

, . 1t
X§:§Z+th_§/o Y J(i—-k)XFds Viez'teR" (1)
kezd

where ( is a random vector independent from W and J an even deterministic
sequence. We would like to write it in some infinite-dimensional linear space E

1 t
Xt:C+Wt—§/ JXSdS, t€R+, (2)
0

As usually, we have to choose a state space E C RZ" such that the series
in the right hand-side of (1) is convergent. It’s quite natural to make the
following assumptions :

1. t — W, € C(RT, E) P-almost surely.

2. E contains each finite sequence. For i € Z¢, we denote by e; the se-
quence for which every component vanishes except the i-th which is
equal to 1.

3. For each i € Z%, the canonical projection 7; is continuous from E to R.
4. The family (e;);cza is a weak Schauder basis for F, i.e.
Vee ENge BN li ; ) = 3
z ¢ Jim, ;ﬂ (2)¢(e:) = ¢(x) (3)
5. J is a continuous linear operator on E, with 7;(Je;) = J(i — j).

We now introduce our choice for E. We fix a p > 0 and define

$k|
B,={z eR”, |||z, = sup ] < 400}
g " peza (L+[K[)P



and

||
Byo = B,, lim = 0}.
ho={r €5, etoo (L4 [K])P )

It’s easy to see that B, is a separable Banach space whose (e;);cza is a
Schauder basis. We will see that B, is a convenient choice for E. Let us now
define
A, ={z € R¥; |lx|la, = D (1 + |n|)|za| < +00}
nezd

We will always suppose that J is even and J € A,,.
For z = (21, ..., 29) € C* and n = (n4, ...,ng) € Z¢, we set

n
2" = H 2" and |n| = Z |74
i=1

U={zeC% Vie{l,...,d} |z =1}
We introduce J, the Fourier transform or the dual function of .J, defined on

U by
= J(n)" (4)

nezd

Since J is summable, it is clear that J defines a continuous map on U. Let
us recall that, for two sequences u = (u,)pezd, v = (Un)neze such that

Vn € 74 Z | v, k| < 400,
kezd

the convolution v * v of v and v is defined by

Vn e Z (uxv), = Z U Vp—k; -

We recall some results and tools (see [12] for more details).
Lemma 1. (A, ||.||4,,*) is an unital commutative Banach algebra.

Lemma 2. Vu,v € A4,
~Vz e Uuxv(z) =(2)i(2)
— exp(a) = exp(u) on U.
— u tnvertible <= 4 does not vanish on U



1.2 Some results on Gaussian Gibbs measures

In the present paper, a probability measure on a topological space {2 en-
dowed with its borelian algebra is simply called a measure on 2. We denote
by P(£2) the set of measures on 2. As usually, for z € €2, the Dirac measure
at point z is denoted by J,.

Let us introduce the concept of Gibbs measure on ) = R%". Each w € Q
can be considered as a map from Z¢ to R. For a finite subset A of Z¢, we will
denote wy its restriction to A. Then, when A and B are two disjoint subsets
of Z% and (w,n) € R x RZ, wn denotes the concatenation of w and 7, that
is the element z € RAYE such that

Wi if ¢ G,A
Zi =
n; ifieB

For finite subset A of Z¢, we suppose that a function ®, has been defined,
which is measurable with respect to the o-field generated by {m;,i € A}.
A collection (®4), of such functions is said to be an potential. For a finite
subset A of Z¢, the quantity

Hy = Z g

B: BNA#D

is called the Hamiltonian on the volume A. Usually, Hy can be defined only
on a subset of R%". We suppose that there exists a subset €2 of €2 such that

V finite A Yw € Q Z |Pp(w)] < 400
B: BNA#£D
We now define the so-called partition function Z, : denoting by A the
Lebesgue’s measure on the real line, we set

Za) = [ exp(=Halmen)}ax o)

By convention, we set eXp(—HA(nAwAc)) = 0 when the Hamiltonian is not
defined. We suppose that for each w in Q, we have 0 < Z)(w) < +o0. Then,
we can define for each bounded measurable function f on 2 and for each

w € Q,

_ S ©XD(= Ha(nawae)) f (nawae )N (na)
ZA(QJ)

IT5 f(w)



If a measure p on  is such that p(2) = 1, we say that p is a Gibbs
measure associated to the potential ® when, for each bounded measurable
function f and each finite subset A of Z¢, we have

E,(f|(Xi)ieae) = Uaf pas.

The random dynamics introduced in (1) is related with the Gibbs measures
associated to the potential ®/ defined on Q by

%J(O)wf it A ={i}
O (w) = ¢ J(i — jlww; it A={i,j}i+#] (5)
0 otherwise

Then, the corresponding Hamiltonian function is equal to

Ha(w) = %Z S Ji— e+ Y = ;. (6)

1EN jEA €N, jEAC
It is clear that H, is well defined on ©, if we choose :
Q={weR™, Viez!, > |J(i-juwl<+oo}.
jezd

We denote by &; the set of Gibbs measures on RZ" associated to the
potential given in (5). If & ; contains more than one point, we say that phase
transition occurs. As each set of Gibbs measures, &; is a convex set whose
extreme points are called pure phases. (For general results on Gibbs measures,
see [13].) Dobrushin and Kunsch gave the following description of & :

Proposition 1. &; contains at least one element if and only if the following
conditions are fulfilled

1. J(U) c Rt
2. fU ﬁdz < 00, where dz is the normalized Haar measure on the torus U.
In this case, & is described as follows :
G = {ptoc xm; m € P(Q) and m(M) =1}, (7)
where o 18 the centered Gaussian measure with % as spectral density and
M ={we; Viez', Y J(i-jw =0} (8)
jezZ4

The pure phases are obtained when m is reduced to a Dirac measure.



Remark 1. The choice of the space state is not unique and is itself an
element in the definition of Gibbs measure. By chance, we have here By C Q
and it comes immediately from the definition that Bjo-Gibbs measures are
exactly Q-Gibbs measure with their support in B,o. Moreover, let i € P(B,)
be a Gibbs measure for J : it can be written if the form p = o * m, with
m(Mg) = 1. By the lemma of Borel-Cantelli, it is not difficult to see that
Poo(Bpo) = 1. It follows that m(Byp) = 1. In other words,

&, NP(Bpo) = {ftec xm; m € P(Byp) and m(ker J) = 1}, 9)
with
ker J = B,o N M.
Remark 2. In a previous paper [12] , we have shown the following result :

Proposition 2. Let p > 0 and J € A,,.

&, NP(B,) contains exactly one element if and only if J >0 onU.
Then, &; NP(B,) = {iteo}-

1.3 Existence of the infinite-dimensional diffusion and
first properties

The next lemma shows some properties of J as operator.
Lemma 3. Let J be an even sequence in A,. Then J induces an operator J
on B, such that w;(Je;) = J(i — j), which maps B, into itself and satisfies
1z, = 11 l2eB,0) = /1] 4,-

Démonstration. The proof is classic. The key point is the inequality
(L+li+ D7 < (L Ja)P (L + [5])". O

Remark 3. This justifies the notation ker J = {u € By, Ju = 0}.
Lemma 4. For P-almost every w, t — W, € C(R", B, ) holds .

Démonstration. Let A, be an increasing sequence of finite subsets of Z¢ such

that lim 1+ A, = Z%. We denote by "W the process defined by "W = W?

n—0o0
if © € A,, 0 else. "W, takes its values in a finite dimensional space, and

has almost-surely continuous coordinates. Then, ¢t —" W; € C(R*,B,0)
P-a.s. for each n. It suffices to prove that for almost every w, "W;(w) con-
verges uniformly to W;(w) on every compact subset of R,. We will show that
P(M,engeqr Bsq) = 1, where

Rs,q - {w : mn—>oo Sl[lp] ||nVVt - Wt“ S Q}
te|0,s

7



n Wi S; .
But supcjo [|"Wie — Wil| = sup,¢jo.q SuPga,, ﬁ = SUPig, Fypre With

S% = supepq [W/|. Thus, the complement of R, is
Cpq=1{w: 8 > q(1+]i])* io.}.
Now, using the famous inequality P(S? > ¢(1 + |i])P) < 2exp(—%)

and the fact that (1 + |¢])? > VIni, the result follows from Borel-Cantelli’s
lemma. U

Remark 4. The same arqguments prove that every centered Gaussian se-
quence (X;,)peze with bounded variances belongs to P(B,y). Particularly,
Moo € P(Bpp).

We need the next lemma about a deterministic equation to prove the
existence and uniqueness of the solution of the s.d.e. (1).

Lemma 5. Let E be a Banach space, w € C(R™, E), J a continuous operator
in E and ¢ € E. Then, the integral equation

tJ
z(t) =C+w(t) — / §x(s) ds

0

admits an unique solution x € C(RT, E) : it is given by

o) = ()¢ + ) =5 [ et = 9Fuls) ds

Démonstration. Existence and uniqueness of a solution follows from Picard’s
fixed point theorem on C([0,77], E).
m

Notation : If f is a borelian measurable map from €2 into 2’ and p a measure
on (), the distribution of f under p is the pushforward measure fu — also
denoted by 7, specially when (2 is an abstract space and when f is said to be
a random variable — defined on €' by fu(A) = u(f~'(A)), for each borelian
set, A.

Theorem 1. Let (0, F, P) be a probability space, (W"),cza a family of P-
independent Brownian motions and J € A,. Then, for each B, o-valued ran-
dom wvariable ¢ independent of (W*);cza, there exists a unique Byg- valued
process Xy with continuous paths which is solution to the diffusion equation
(1) . It is given by

Xi(w) = e 3¢ (w) + Wiw) — % / e I3, (w) ds (10)



Xy is a (Fy)-adapted Markov process. For an initial law v, the law of the
process at time t is given by the following kernel :

t
Tiv = (exp(—éJ)V) * g, >0, (11)

where g denotes the law at time t of the solution with 0 as initial condition.

Démonstration. Let Q0 = {w : t = W(w) € C(RT, E)}. Let us define, for
w e

Xt(w) = e_t%C((,U) -+ Wt(W) - %/Ot 6_(t_s)%W5<W) ds

and X;(w) = 0forw € Q\Qy, the process (X;) is well defined, and by lemma 5,
it follows that X, verifies (on €2, then a.s.) the smoothness conditions and
the integral equation it was asked for. Now, let (X’) be another solution : we
set

t
J
%zﬂutﬁX&@GC@ﬂEWﬂXﬁ%+W@i/5&@ vt € R*Y.
0
By the uniqueness part in lemma 5, ¢t — X;(w) and ¢ — X'(w) coincide for

w € Q1 NQy. Since P(Q2;N€) = 1, these are indistinguishable processes. [

Definition : Let X and Y be FE-valued random variables whose norm
admit a second moment. We define the covariance Cxy of X and Y as a
continuous linear quadratic form on E’ x E’, where E’ is endowed with the
x-weak topology.

(¢, 9) € E' x E' = Cxy(¢,¢) = E¢(X)y(Y).

Lemma 6. For each q > 1, there exists a positive constant M, such that for
each o > 0 and every sequence X = (X, )neza of centered Gaussian random
variables satisfying to

Vn € Z¢ EX? < o2,

it comes
E|lX|I5, < Mo (12)

Démonstration.
—+o00o
BIXI, = [ e PO, > 1) de
0

+oo
<am+/ g " P(| X | s, > ot) dt).
1

9



P X5, > ot) = P(Uneze{|Xa| > (1 + [n])’0})
< Y P(IX] > t(1+ [n])Po).

nezd

Since P(|X,| > t(1 + |n|)Po) < mexp(—W), it suffices to

prove that

+00 ,g— 1+|n|)P)2
Zkezd (1+|1n\)p fl t 26Xp(—%) dt < +o0.
But since (1 + [n|)? > 1,

/1 Ootq’Q exp(—%) dt < (/1 Ootq’2 exp(—%) dt) exp(—%)

Since (1 + |n|)? > v/Inn, we may conclude. O

We will note
(.,.)= Cwywy (4 2)-

It is easy to see that
Vs, t >0 Cw,w,(.,.) =inf(s,t)(.,.).
For J € L(E,FE) and ¢ € E', we define J.¢ € E' by
Vee B (J.o)(z) = o(Jx).

It is easy to see that the operator induced by an even sequence J in A, is
symmetric with respect to (,) :

Vo, € E' (J.g,9) = (¢, J4).

Proposition 3. Let J be an even sequence in A, and (Xi)i>o the solution
in By to the s.d.e. (1) with initial condition 0. Then, the covariance of X
s given by

Vi Z 0 ngﬂwb € El CXt,Xt(¢7¢) = <V;f¢71/}>7

where .
Vt:/ exp(—sJ)ds.
0
Furthermore, X; admits

/Ot exp(—s.J) ds (13)

as spectral density.

10



Démonstration. Since we have the explicit formula (10), the existence of the
covariance is obvious and its computation is easy. The exact computation of
V; can be found in [11]. Now, first remark that when Cyy (¢, ¢) = (B.¢,¥)
and when B is the Toeplitz operator associated to the even sequence b € A,,
i.e. with m;(Be;) = b(i — j), it comes

EY}Y; = Cyy(m,m;) = (B.m,m;) = (B.m)(e))
= m(Be;) = B(i,j) = b(i — j)

= /Ul;(z)dz

Since fg exp(—sJ) ds = fot exp(—sJ) ds, we can conclude. O

2 Time Asymptotics

The first step in the study of the asymptotic behaviour of the diffusion
X, solution of (1) is the study of the law i, of the solution of (1) with initial
condition 0. When J has finite support, the asymptotic behaviour of y; has
been studied by Deuschel in [7|. However, he studies the convergence with
respect to the product topology in RZ" but we use here the topology of B, .
Moreover, we are interested in the speed of convergence. Therefore, we need
some tools.

2.1 Metrization of the convergence

We denote by R, the following set of test functions

Ry — { f € C*Byo,R) }

SuprBp,o ’f(ﬂ?)‘ =+ SuszBp,o HDﬂUfH =+ SupmGBp,o HD?:fH S 1

where we set
|D5]] = sup{| Di(h1 @ - -~ @ hy); il B,y <1,¥i € {1, k}}
Finally, we define for each pu,v € P(B,) :

dv)=sup| [ fdu~ [ 1 (14)

Since B, is separable, the distance d metrizes the weak convergence in
P(Byo)-

11



Lemma 7.

Vi, po, v1,v2 € P(Bpo)  d(pr * pio, vy * 1) < d(pg, 1) + d(pe, 2)  (15)
Démonstration. See [2]|, page 37. O

Lemma 8. Let ji1, 12 be Gaussian centered measures on B, admitting ¢,
and ¢y as spectral density. Then

d(p1, pr2) < Ms|ld1 — d2|1,

where

61 — bl =/U|¢1<z> — (2)| dz

and My is the constant appearing in (12) for ¢ = 2.

Démonstration. Let (€2, F, P) be a space with a probability measure support-
ing independent centered random variables X,Y, Z,T" such that Px = pu,
Py = s ant that the law of Z (resp. of T') under P is the centered Gaussian
law with (¢1 — ¢2)~ (resp. (91 — ¢2)T as spectral density. Let f € Ry. We
have

[#am= [t = B0 -EfY)

= (Ef(X)-Ef(X+2))
(Ef(X+2Z2)—Ef(T'+Y))
)

_l’_
+ (Ef(T+Y)-Ef(Y)

But X +Z and T'+Y are Gaussian, centered, and have the same spectral
density ¢1+ (91 — ¢2)” = (¢p1 — d2)" + ¢ : then, they have the same law. In
particular, Ef(X + Z) =Ef(T'+Y), and then

Ef(X)-Ef(Y)=(EfX)-Ef(X+2)+EfT+Y)-Ef(Y))
By Taylor’s formula in Banach spaces, (see for example [3], p. 77),
1
fT+Y) = F¥) = Df(D)+ [ (1= 0D fyar(T 0 T) i
0
Hence

Ef(Y +T)—Ef(Y) =EDfy(T) + E/l(l —t)D? fy (T @ T) di

12



Since D f is bounded and since Y and T are independent variables, we have
ED fy(T) = EDfy (ET) = ED fy (0) = 0.
Moreover, ||[D?f|| < 1, so that
|1D* fywer(T @ T)| < ||T|I*

and we obtain 1
Ef(T+Y)-Ef(Y)] < §EHTH2-

By the same way [Ef(X + Z) — Ef(X)| < 3E|Z||*. By lemma 6, we get
E([1Z][3,) < Mal[(é1 = ¢2)" |h
and E([|T|5,) < Mall(¢1 — ¢2)*[li. Now

Ef(X) —Ef(Y)] < Ma||(¢1 — d2)~ [ls + Mall(d1 — ¢2) " [l = Mall1 — ¢ally

We conclude that d(puy, pe) < Mal|dr — ¢a|s- O

2.2 Asymptotics with zero as initial condition

We now look at the asymptotic behaviour of p,.

Theorem 2. The following assertions are equivalent :
1. (p) has a limit point when t tends to +o0o.
2. lim, ., o pr,o (mo(2))? dpe(z) < 400.
3. & is not empty.
4. (pe) converges in P(Bpo) when t tends to 4o0.
When one of these conditions is fullfilled, 1, converges to jis, the Gaussian

measure on RZ" with %I as spectral density.

Démonstration. 1. = 2. If (u;) has a limit point when ¢ tends to +00, so does
(o). But a convergent subsequence of Gaussian r.v. has bounded variances.
Hence, 2. follows.

2. = 3.
/( o(2))? dpu(z // D dz dt > tx(J <0),

when x is the normalized Haar measure on U. Then, J is a.e. positive,
and — since it is continuous — always nonnegative. Since J is a.e. positive,

13



et (@) g 4 nice expression for the spectral density of u;. Now, by Fatou’s

()
lemma
1 1— —tJ
[ e <t [T g o)) o) <+
U J(2) U J(2)

Now, Proposition 1 implies that &, is not empty.
3. = 4. Always by Proposition 1, J is nonnegative and % integrable. There-

1—exp(—t.J)

fore, J is a.e. positive. Since 1 (resp. poo)admits (resp. %) as spec-

J
tral density, it follows from lemma 8 that
exp(—tJ(z
A, proo) < Mg/ M dz
U J(2)

The right-handside tends to zero by dominated convergence.
4. = 1. Obvious. O

From now on, we will suppose that assumptions of Theorem 2 are fullfilled.

2.3 Exponential bounds in A,

Lemma 9. Let k € Z, et f € C*(U,C). For each n € Z% such that |n| < k,
there exists a function g, € C*°(RT x U,C) such that

O exp(—tf) = exp(=tf)gn(t,.)

and

g (, oo = O(E™).

Démonstration. We get the proof by natural induction on |n| with the help
of the multivariate Leibnitz formula. O

Notation : For f € CN(U,C), we define
[fllpx = max{|Op f(z)|; 2z € U, [k] < N}.
Lemma 10. Let k € Z, such that 2k > g +p; then
VfeC*(U,C) 3NFecA, f=F.
Moreover, there exists a constant K such that

1P ], < KL= A)*fllz2)-

14



Démonstration. If such a sequence F' exists, it necessary satisfies to F), =
(f,Xn), where x,(z) = z™. Then, let us define F' in such a way.

Fy=(fixa) = mu, (1+ ) x)
1 .
= W(fa(l—@ Xn)

= W((l — A)*f, Xn)

Hence (1+ |n|)PEF, = %((1 — A)* £, xn), and next, by Cauchy-Schwarz :

1P, < (30 S 0 A fluag

22 (L4 [nP)
]

Lemma 11. Let ¢ € A, such that o€ C?(U, C), where k is an integer such
that 2k > % +p. Then

1. VF € A,, Ve >0, we have
1 % exp(—tF)||a, = o(e™meI=)),

where R R
mg(F) = inf{Re F(2);z € supp ¢}.

2. When F € C?*(U,C), we can be more precise : there exists a constant
Krp independent from ¢ such that

VE >0 |6 * exp(—tF)||a, < Kppplld| port e meE,

Démonstration. We first prove the second part of the lemma : let £ be such
that F' € C%(U, C). By lemma 10, we have

6 exp(—tE) s, < KII(L— AV (Gexp(—tE) 12
< Ksup{|(1 - AV (Gexp(~tF,))(2)], = € supp &}

If we expand (1—A)* by Newton’s formula, and next by Leibnitz’s, we obtain
the existence of a constant K such that

Vf, g € C*(U,C) |(1=A)* fglleo < KWV f]| p2e max{|0;g(z)|; z € supp f,|i| < 2k}.

15



Thus, we get

o+ exp(=tF)lla, < KK ma g:(t, ) el L s ()

< KFak‘»pHQAﬁHD%t%e_mdF)t’

The last inequality comes from lemma 9, and the step 2. is done..

Next go to the general case : let F' € A,. For n € Z,, set F, (i) = F(i) if
li| < n, 0 else. Obviously, F, is C* and F, tends to F. Let us choose n such
that ||F' — F,|la, <e/3. We have

- ~ €

[mo(Fn) = mo(F)| < [[Fa = Flloo < [|Fn = Flla, < 3
and

¢ x exp(—tF) = ¢ *x exp(—tF,) * exp(t(F,, — F))
Hence
| exp(—tF)|la, < ¢ exp(—tFy)lla, | exp(t(Fn — F))l|a,
< ¢ = eXp(_tFn)||Ape||Fn—F”APt
Now, R ,
1 % exp(—tF) |4, < Kp, ppll 0]l pont* e a5,

which achieves the proof. O

2.4 Spectral analysis

Definitions : For u € B, we define 4 € A} by

Vee A, u(z)= Z Un Ty,

nczd

and we call spectral support of the sequence u the following subset of U :
spec u = supp % = C Upco, O,
where
O, ={OopensetinU , YfeA,suppfCO=a(f)=0}
It is easy to check that

Vu € B,,VA € C—{0} spec (Au) =spec u

16



and
Vu,v € B, spec (u+v) C spec uUspec v

Fundamental example : Let u be defined by u,, = 2", with a fixed z € U.
We will prove that spec u = {z}. First show 2z € spec u. Let O be an open
set containing z. We can find f of class C*, such that f(z) = 1 and whose
support is a subset of O. Now, we get J € A, such that f = J

which proves that O ¢ O,. Then, no element in O, can contain z i.e. z €
spec u. Conversely, let z € U\{z}. We can find a neighbourhood O of x
which does not contain z. Now, let J € A, such that supp J C O : thus

@(J) = J(z) =0, since z is not in O, a fortiori not in the support of J. This
proves that O € O,, and hence x ¢ spec u, since z € O.

Lemma 12.

u — u isometrically maps B, into A;.

Démonstration. It is equivalent to the well-known fact that the set of bounded
sequences is the dual of the set of absolutely convergent series. O

Lemma 13.

For an even sequence A € Ay and u € B, we have Au= A
Lemma 14. For each u € By, O, is stable under union.

Démonstration. Since the proof is well-known in the context of distributions,
we will omit it. The key is that the Banach algebra of functions Ap allows to
separate a point from a compact set, and then we can exhibit a partition of
unity. Such Banach algebras are said to be regulars ( see [17], chap VIII). [

Lemma 15. Let f,g € A, and i € Aj,. ]ff and § coincide on a neighborhood
of supp u, then u(f) = u(g).

Démonstration. By linearity, we may assume g = 0. Let V' be an open set
containing supp « on which J identically vanishes : then

supp f C OV C Upeo,0 = O'.

By lemma 14, O’ € O,, then, by definition of O,, we get a(f) = 0. ]
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2.5 Asymptotics for nonzero initial condition
Notations : We denote by T the map from B, to [0, 4oc] defined by
T, (u) = inf{J(2); z € spec u}.
For 7 > 0, we set
E;.={ve B,y YT;v)e€lr,+o0]}.
We can now claim the main theorem of this section.

Theorem 3. Let J be a potential in A,. For x € B,, let us denote by pf
the law at time t of the s.d.e. (1) with initial condition ( = x.

1. Asymptotic behaviour
If « has the following decomposition x = u + s with s € kerJ and
inf{.J(z); z € spec u} > 0, then we have

B = T,

t—+o00

where Tslioo 1S the tmage of i by the translation Ts by vector s.

2. Speed of convergence in case of uniqueness of the Gibbs measure
If J is strictly positive, there is uniqueness of the Gibbs measure. Let
a = infy J > 0. Then, for each b < a, we can find a constant Ly such
that

M.
Va € Byo V>0 d(pf,p) < e+ Lflz] e,
a

where My has been defined in lemma 8.

3. Speed of convergence in case of phase transition
We suppose that

{zeU;J(z) =0} ={(1,...,1)}

and that there exists A € Gly(R) and dy < d such that the following
equivalence holds at point O :

f(@) ~ || Az]®,

where o ’
01, ...,05) = J(ef, ... e'%).

Then, there exists constants K and L such that, if v € B, satisfies
r=u+ s with s € ker J and inf{J(z); 2z € spec u} > 0, we have

K < lim, oo d(pf, rop)t%o " < Tingoed(uf, 7o)t < L. (16)
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Let us first make some remarks.

Remark 5. The set of fastly decreasing sequences can be written in the form
S(Z%) = Npez, Ay : the family of norms (||.||a,)pez, induces the usual Frechet
space topology on S(Z%). Conversely, the set of slowly increasing sequence can
be written S'(Z*) = Upez, Byo and the family of norms (|||, )pez. induces
its usual topology as Frechet space. Therefore, Theorem 3 can be reformulated
with J € S(Z%) and x € S'(Z2), but the initial form is of course more precise.

Démonstration. The main step is contained in the following lemma.

Lemma 16. 1. Let u € B,y admitting the decomposition u = v + s with
s € ker J. Then, for each e >0 :

H eXp(—tJ)u - S“Bp = 0(6_(TJ(U)—E)t)'

2. IfJ e C* (U, C), with 2k > g—l—p, we can be more precise : there exists
a constant K,  such that

Vu € Byp,u=v+s, s€kerJ
Vt> 1 |lexp(—tN)u—s|p, < Ky, lvlls,t*e 700

Démonstration. At first, exp(—tJ)u = exp(—tJ)v + exp(—tJ)s. But since
Js = 0, we have exp(—tJ)s = s and it just remains to control exp(—tJ)wv.
Now

| exp(=tJ)v|5, = || exp(=tJ).0[[a, = sup [d(exp(—tJ)* @)
lglla, <1

Let 1& be a C?*-smooth function with 2k > %l + p which is equal to 1 on
(€U ﬂ@zrﬂm—Z}

and vanishes on

(€U ﬂ@grﬂ@-%}

By lemma 10, zﬂ is the Fourier transform of a sequence ¢ € A,. We have
supp 0 C {z € U; J(z) > T (v)}.

Since J is continuous, {z € U J(z) > YT, (v) — 5} is a neighborhood of
supp v and it follows by lemma 15 that

Bexp(—tJ) * ¢) = #(4) * exp(—t.J) * 9)
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Now
0(¢)  exp(—tJ) * )| < |0]| 4y |0 * exp(—tJ)|[, |9l 4, (17)

Hence, we have

lexp(=tS)vlis, < ||vllz,|[¢* exp(=t])[a,

But my(J) > T;(v) — 5, and the first desired assertion follows from the first
part of lemma 11. Now, we must be more precise to get the second desired
result : we have to control the right-hand-side of (17), and, therefore, to
choose ¢ and ¢ in a nice way.

Let ¥ be a C*(R,R) function mapping | — 00, 0] to 0 and [1, +oo[ to 1.
For real numbers a, b such that a < b, we define

T —a

b—a>’

\I/a,b(l‘) = \I/(

in that way that ¥,, is a C>°(R,R) function mapping | — 0o,a] to 0 and
[b, +00o[ to 1. It is easy to see that, for each i > 0,

sup |\II((;’3)| = sup U],
R R

(b—a)
Moreover, there exists a constant My such that for each g € C*(R,R) and
each f € CV(U,R), we have

< (%)
oo fllow < Myl llow g sup g

We now put

~

77Z) = \I/T—%,T—% o J:

with the notation 7 = T ;(v). € is not yet determined. It comes

. ) 0
9]l par < M%HJHD%Orgnigks%p!‘lff_g,f_

c|
1

A 4 . )
< Z)e (4)
< Mogf| Tl pe maxe ()" sup [97]

A 4 .
< Moo max(1, (2)*) max sup (W)

Let t > 1 be a fized number. Now, we put € = %, and apply the second part
of lemma 11 to control ||¢ * exp(—tJ)|| 4, : we have

mo(d) 2 Tol) = 5 = Xolo) - 7
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from which follows

| exp(—tJ)u — s||p, < K, |[v] 5, t*Fe 7O,

with
/ _ 2 7 (4)
Kip = € KapepMoxl| T oo max sup [W7].
O
Now, since
d(ufﬂ—sum) = d<7—87—67t%uﬂt77—suoo)
= d(7 _g e Hoo)
we get
T —_td
ld(py s Toptoo) = dlpe, proo)| < d(T oy pie, i) < lle™"2ul,

By lemma 16 and theorem 2, we get the first assertion of the lemma.

In case of uniquess, we have

e 4 exp(—tJ(2)) L
L R e o Rt

U

Using lemma 11 and the fact that J > a, we get the desired speed of
convergence.

In order to determinate the speed of convergence in case of phase transi-
tion, we will use a lemma in the spirit of the Laplace method.

Lemma 17. We suppose that
{zeU;J(z) =0} ={(1,...,1)}
Let A € Gly(R) and dy < d. We define a function f by :
F(Or,...,00) = J(E%,. .. e%).

We have the following results :

1. If
li_mxHof(x)HAxH_dO Z 17
then
— e—tj(z) d _q 1 Kd d
li oo _ dz td < —I(— -1 18
it /UJ(Z) = Qet A (2m) (do ) (18)
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2. If -
lim, o f(z)||Az|~% < 1,

then

et/ d_q 1 Ky d
li - dz td > ————J(— -1 1
ﬁtﬁoo/m J(Z) z 0 — detA(27T)d (d[) )7 ( 9)

where the constant K4 only depends from the lattice dimension d.

Démonstration. Since the proof of (19) is similar to proof of (18), we will only
prove (18). As usually B(r) = {z € R% ||z||, < r}, where ||.|2 is the canonical
euclidian norm in R%. Then, let us suppose that lim, ., f(z)||Az||~% > 1. For
each € > 0, we can find a < 1 such that

[Az]| < a = f(2) > (1 —¢)|| x|

Since f does not vanish on the closure of [—7, 7]%\A~! B(a), we have
b= ian—l B(a) f > 0, and

eftj(z) 1 1
—dz = —/ e @) dr + O(e™
/U J(2) (2m)* Ja1 By f(2) )

We have

1 / g 1 1 / L pa
—_ e z dl' = — € z dZB
(2m)4 Ja-1 pay f(2) (2m)ddet A Jp(a) f(A™ D)

1 1 1 L ol
T d
@m)idet A1 2 /M ER !

1 ]_ ]_ @ d—1 1 _t(l_g)rdo
(2m)ddet A1 — 5Kd/0 Tt dr,

where K, is the surface of the unit sphere of RY.
By the change of variable u = (1 — &)r®, we get

a (1—¢)tado
pd—1 Le—t(l—s)r"lO dr — (1 . 6)—%4-1 1 e‘“u%_Q du
0 T'do t%—l 0

1—&)tao

d
Since limy_, o fo( e~ Uudo 2 du = F(% — 1), we deduce

_ et 4 1 _.d Ky 1
limy; oo = dz td ~ < '—-—1
= A J(z) det A (do )(27T)d (1 _ 8)%
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Since € > 0 is arbitrary,it gives

—_— _tJ( ) d _1 1 d K,
li 00 d < N—-—-1 . 2
e /TL‘I J(Z) 2t ~det A (do ) (27T)d ( 0)

]

Now, using the same inequalities as before and the first part of lemma 17,
we see that we can take for the constant in (16) K = Moo~ K;;F( —1).
Let us show the second inequality in (16) : by the second part of lemma 17,

it suffices to prove the existence of a constant N > 0 such that

VE >0 d(p, 1) = N[ — Poclf1, (21)
with ®,(z) = 75(1 - e @)) and Poo(z) = 75+ Let 0% = | @xli and
o = [[@efl1. Since Do > T4, [0 — Coclls = [[Poc|ls = [Re]l1 = 05 — oF.

This simple remark will be important. Let ¢ € C*(R,R"), equal to 1 for
2| < 10 and vanishing for |z| > o.. We define

1 _a?
9(s) = Ex0,6)0 :/ o(r)e” = dx.
R V2Ts
Now, we can choose H > 0 such that the function f : B, — R defined by

f(z) = Hg(m(x))

belongs to Rs. Now

d(pg, p) > I/f du?—/f du| = Hlg(o7) — glo2)|

g is derivable at point o > 0 with

(‘b
<
&l
N|w
|
|
+
£}
N7
|
—
8
N>
QU
S

/m )

Since —% + (0?)"'x? < —1 on the support of ¢ and since ¢ is positive in the
neighbourhood of zero, 1t comes that ¢'(6%) < 0. Then

l9(a7) = g(a2)| ~ |g'(0%)llo — o3| = |g' (") 1| @1 — Pec 1,

which implies (21).
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Remark 6. In this remark, we would to explain that the set of suitable initial
conditions u s relatively large.

1. It is easy to construct nonzero sequences u satisfying to the assumption
inf{J(2);z € spec u} >0 : let z1,..., 2, some points of U such that

Viell,...,p] J(z)>0.

Given complex numbers Ay, ..., \,, the sequence v defined by

u, = Re (Z Xi(z)™) (22)

satisfies
spec u C {21, .., 2p}s

which proved the desired assertion.

2. If K is a compact subset of U on which J does not vanish, every
sequence defined like in (22), with z; in K belongs to Ej,, where
T =inf,cx j(z) If we prove that £, is closed for the *-weak topology
of B,, it follows that every weak limit of such sequences belongs to £,
and then satisfies inf{J(z); z € spec u} > 0.

Lemma 18. £, is a closed subspace for the x-weak topology of B,,.

Démonstration. Let (u,)n,>1 be a sequence in F;, which converges to
u € B,. For each n > 1, supp u, C F = {z € U, .J(2) > 7}. In other
words, if O" is the open set U\ F', we have for eachn > 1, O’ C Upeo, O.
By lemma 14 Upco,,, O € O,,, but it is easy to see that if O, and O,
are open sets satisfying O; C O, then O, € O, = O, € O,. Then,
0 e0,,. A

Now let f € A, such that supp f C O

For every n holds ,(f) = 0, and then passing up to the limit, we get
a(f) = 0. Hence O’ € O,, i.e. supp u C F, or equivalently u € E; .
This proves that E;; is closed for the x-weak topology of B,,. O

2.6 Extension to non-deterministic initial conditions

The previous results are formulated for deterministic initial conditions.
However, it is not difficult to see that for any initial measure v such that
v({z € Byo; T(x) > 0}) = 1, we have always T — fioo. If we want estimate
the rate of convergence, we must control the speed with which e_t%C vanishes,
since d(1Y, piso) is controlled independently.
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In case of uniqueness of the Gibbs measure and integrability of ||(]|g,
inequalities

d(P

e

¢t —td
i 00) SElle™2C,, <E[Cls,olle™2 4,

together with lemma 11 with ¢ = ey, ensure an exponential rate.
The following result, including the phase transition case, is much finer.

Theorem 4. Let J be a potential such that J € C?*(U,C), where k is an
integer satisfying to 2k > p+ 4. We suppose that ||(||s,, is integrable and
that there exist positive reals K and 3 such that

P(Y;(¢) <r) < KrP,

Now, we have
B lnt)ﬁ)
e '2¢ t ’

Démonstration. Let f € Ry. For x > 0, one has

Ef(e™2¢) — F(0)] = |E(f(e™*2¢) — FOO)r,()eay + E(F(e2C) — F(O))Lr, (0120
2P(T,(C) < ) +Elle™2¢|| 5, L, (0)20)

t o
2K 4 Ky () e FEIC] .

IN

IN

(The last inequality follows from the second part of lemma 16.)
We now choose © = 2(4k + 3)12L : then

J 1 K/ E . 1
[Ef(e™2¢) — f(0)] < 2K (2(4k + 5))5(“715)5 n %Ff

Since this is true for each f € R,, the proof is done. O

3 Invariant measures are (Gibbsian

The goal of this section is to determinate the set of invariant measures for
the dynamics defined in (1), that is, using the notations introduced in (11),
to determinate the measures v € P(B,) such that for each t > 0, Tv =wv.

Theorem 5. Let p be positive. We suppose that J is a potential and k an
integer such that 2k > & +p and J € C*(U, C).
Then, for v € P(By,yo), the following assertions are equivalent :
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1. 3p e P(Byp) Tip—v

2.Vt>0, Tw=v

3. dm € P(Byo) m(kerJ) =1 and v = m * p, where p is the Gaus-
sian centered measure with spectral density %

4. v is a Gibbs measure with respect to the potential J.

Démonstration. The implication 1. = 2.is classic : for any fixed ¢ > 0, the
identity T;1sp = TiyTsp holds. By (11), the process is Fellerian and, when s
tends to infinity, we get Ty = v. The converse implication 2. = 1. is obvious.

Let us prove 3. = 2. First, using 1. = 2. with u = dy, we see that ji is
invariant under the dynamic. Now, if v € P(B, ) satisfies v = m * p, with
m(ker J) = 1, we obtain

t
T = exp(=5J)(m* poo) * e
t t
= exp(—éJ)m * exp(—iJ) * flog * [t
t
= exp(—gJ)m* Tijie
= M* oo
=v
We now prove 2. = 3. Let p be another invariant measure. We will
compare p and fis. It’s easy to build a probability space (€2,.4, P) and P-

independent processes Xy and W such that Px, = oo and W is as before an
infinite Brownian motion under P. We define

J t
X, = e’t%Xo + W — 5/ e’(t’S)%T/VS ds (23)
0

Since p is invariant, we have

thO ,U,:PXtIP tXO*Mg (24)

e 2

We have (X;):>o is tight because Py, = u. (W; — %fot e~ =ITW, ds)s is
also tight because its law under P is ) which converges to jis. Since

t
e Xy =X, — (W, — % / e =21, ds), (25)
0

it follows that (e‘t%Xo)tZO is tight. Since p is invariant, we have

2

Vi >0 M:PXt:Pe tXO*/_L?
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Every limit point m of (Pe—%x )i>o0 is such that g = m * ps but using the
=
characteristic functionals, it is easy to see that there this equation has at
most one solution. Since (e 72 Xy)>0 is tight, it follows that it is convergent.

Then, its limit m satisfies to
Vi>0 e 2m=m (26)

and
=% oo (27)
It remains to proof that the support of m is included in ker J, or Jm = d :
actually, we will prove that every measure on P(B, ) with is invariant under
the flow (exp(—tJ))i>o verifies Jm = &y. Remark that such a measure is
invariant under the flow (exp(t.J));>0 too.
In a first time, we will only prove that J?*m = §.
Let x € supp m, € > 0 and denote by B(x,¢) the ball in B,y with center
x and radius €. We have u(B(x,¢)) > 0. Since p is invariant under exp J,
Poincaré’s lemma ensures that there exists
C C B(z,e) with u(C) = p(B(z,e)) > 0 and such that for each y € C, the
sequence (exp(nJ)y),>o returns infinitely often in A. Since p(C) > 0, C' is
nonempty. Let z. € C' : we have
lim

—=———n—00 |

|exp(nd)z. —z|| < ¢

and
tim, | exp(n)z. — .| < 2.

Lemma 19. For K € A, such that K(U) C R, let us define

+oo
1
h(K)=>" ﬁKJ . (28)
j=1
Then, we have
exp(K) =1+ Kh(K),
and h(K) is invertible in the Banach algebra A,.

Démonstration. The first assertion is clear. We have

+oo

— 1 .

h(K) = ﬁKfl. (29)
j=1""

—

Suppose that there exists z € U such that h(K)(z) = 0 Since
expf(:1+f(i®, (30)
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we get K (z) C 2inZ. But K is supposed to take only real values, so K (z) = 0.
But, by (29), it follows that A(K)(z) = 1 and we get a contradiction.

—C

So, h(K') does not vanish on U and, by lemma 2, h(K) is invertible.

m
Since k > 1, we can write for each t > 0 :
1
JH = ZJzk’lh(tJ)’l(eXp(tJ) —1) (31)
Then ]
[T 2], < IIZJ%_Ih(U)_IIIAp [(exp(tJ]) — I)zc| 5, (32)
So, if we assume that
— 1
M= limt_m”;JQk_lh(tJ)_lﬂAp < +00, (33)
we will have
1% 2.5, < Mlim,_,__[[(exp(t]) — D)z||p, < 2Me, (34)
and then
[ T2 < ([T (@ = 2)||s, + | 2] 5, (35)
< 1|y llz = zells, +2Me (36)
< M+ [T 4, )e, (37)

Since ¢ is arbitrary, J?*z = 0 holds for each x € supp p, or, in other
words, p(ker J?) = 1.
Now, let N € N. We now apply Poincaré’s lemma to the set
B(0, N) Nker J? : there exists Cy C B(0, N) Nker J?* such that
w(Cx) = u(B(0, N) Nker J?*) and such that for each y € Cy, (exp(tJ)y)i>0
returns infinitely often in Cy. But, since Cy C ker J?*, we have

2k—1

nd"Y
exp(tJ)y = nzzot o (38)
If ng = max{n € N; J"y # 0}, we have when ¢ tends to infinity :
Jro
exp(tJ)y ~ o= Y (39)
’n,()!
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Since (exp(tJ)y)i>o returns infinitely often in the bounded set Cy, we have
necessary ng = 0. Then, Jy = 0 and Cy C ker J. Now, if we define Q' =
UnenCy, we have €' C ker J and

p(€) > sup p(Cy) = sup u(B(0, N) Nker J*) = sup u(B(0,N)) =1 (40)
NeN NeN NeN

We now have to prove (33). We need some technical lemmas.
Lemma 20. Define a function ¢ on |0, 400 by

1
et — 1

¢(x) =

Then, for each n > 0, we have the following estimate at infinity :
o (z) = O(c™).

Démonstration. If we define g(z) = %, then ¢(z) = g(e™). Then, we can
compute ¢ (z) using the formula of Faa di Bruno :

! 1
(n) () — M (i) (e (X q)z
¢ <x>_qul...qn!g e e (41)

where the summation extends to the non-negative integers such that
Z?:l 1q; = n. Since g has bounded derivatives in the neighbourhood of 0, the
lemma follows. O

Lemma 21. Let j > 1 and V; : R — R defined by V;(x) = 27¢(z). We have
U, € C*(R,R) and

VneN  sup |\I/§")(x)| < +o0.

zeRT

Démonstration. It’s an easy consequence of lemma 20 with help of Leibnitz’s
formula. 0

Now, we can write

1. 1 .
STER(L]) T = U (1))

Then, by lemma 10, there exists K > 0 such that

1 oo B K X
=T ()l < S5l (1= A) Wi (t) | 2wy
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But

11 = A ot 2y < (1= A Wa(t])] oo
< K sup  |[Wh@)] [|t]]| e
0<i<2k;x€R
< K sup [W5)(@)] [ J]lper (1 +£7)
0<i<2k;z€R

So (33) is proved. Since the equivalence between 3. and 4. follows from
(9), the proof of Theorem 5 is now complete. O

Theorem 6. Let p be positive. We suppose that J € A, is a potential and k
an integer such that 2k > g +p and J € C**(U,C). Moreover, we suppose
that J >0 on U, Then,

{v e P(Byp);Vt >0 Tw=v}=86;,NP(Byo) = {lt}-

Démonstration. The first equality has been proved in Theorem 5. Obviously,
&, NP(B,o) C &;NP(B,). But by Proposition 2, &; N P(B,) = {je}-
Since fioo € &5 NP(Byyo), the result follows. O

Example : Let m > 0 and define J by

1+m ifi=0
J(1) = —%1 if |1 =1
0 else

Since J € C*(U,R), the regularity assumptions are satisfied.

For m > 0, J is the so-called harmonic model with mass. By a direct com-
putation, we see that J>0on U. Then, for each p > 0, the assumptions of
Theorem 6 are fulfilled and the unique Gibbs measure with support in B,
is the unique invariant measure for the dynamic with support in B, .

For m = 0, J is the so-called massless harmonic model. By proposition 1,
& is non-empty if and only if % is integrable, that is if and only if d > 3.
Then, the invariant measures for the dynamic whose support is in B, are
the associated Gibbs measures with support in B, . Precisely, these are the
measures obtained by convolution of ., by every measure whose support is
included in the set of harmonic sequences which are in B, .

Remark 7. [t is interesting to compare Theorem & with the finite dimen-
sional case, which has been studied by Zakai and Snyders [25] : they proved
that the stationary measures assoctated to d-dimensionnal s.d.e.

t
Xy :X0+/ AX; ds + BW;.
0
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are obtained as convolution of a certain measure p and an arbitrary invariant
measure for the deterministic dynamic

t
Ty :x0+/ Ax, ds.
0

This is the way used in the present paper. Of course, an invariant measure for
the deterministic dynamic has not necessary all its support in ker A ; see for
0 1
-1 0
and each radial measure on R? is invariant under the semi-group because
exp(—tA) is composed by rotations. Such a phenomenon of periodicity can
not happen here, because the spectrum of J, which is a symmetric operator,
is real (it is equal to J(U), cf [12]). Note that the given ezample for A is
antisymmetric — and therefore has purely imaginary spectrum. Since it is not
symmetric, it can not be obtained as the gradient of an interaction potential.

example A = and B = I : in this case, one can take p = N (0, I5)

Remark 8. Sometimes, a moment condition on the invariant measure is
preferable to a support condition. It can be done easily using the lemma of
Borel-Cantelli. For example, if J € S(Z%) and if one wants to show that a
stationary measure p is Gibbs, it suffices to show the existence of an a > 0
such that

sup E, | X;|* < +o00.
iezd

4 Conclusion

In this paper, we first represented the extremal Gibbs measures associated
to a quadratic potential as temporal limits of an infinite linear system of
stochastic differential equations with some deterministic initial conditions.

— Uniqueness of such a Gibbs measure with support in B, then coin-
cides with the ergodicity of the associated gradient dynamics, in other
words, the absence of phase transition corresponds to the case where
the system converges to a limit which is the same for all initial condi-
tions.

— This way to get Gibbs measures may be seen as complementary to
the classical D.L.R. approach which consists in getting extremal Gibbs
measures as spatial limits of a collection of finite-dimensional local spec-
ifications with a fixed sequence of external conditions. Kondratiev and
Sokol have already pointed out this fact in |20].

— In case of phase transition, we do exhibit for each pure phase an affine
space of initial conditions as domain of attraction. Indeed, each pure
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phase can be written 7spio,, with s € ker J, and is limit of the diffusion
starting from u + s, with Y ;(u) > 0.
Moreover, we proved that presence or absence of phase transition has an
immediate consequence on the rate of convergence for the dynamics : it is
exponential in case of uniqueness and polynomial in case of phase transition ;
we show that the order dy of an unique root of J directly determines the rate
of convergence, which is

In the last section, we proved that each invariant measure is a Gibbs state
— and therefore, that every limit of the dynamics too. It is, for the Gaussian
case, an answer for the still open conjecture about existence of invariant non
Gibbsian measures for non-linear infinite-dimensional gradient systems.
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