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Abstract

We study here RZd
-valued gradient di�usions associated to quadratic inter-

actions. We establish that each each Gaussian Gibbs measure associated to
this interaction can be obtained as limit in time of the solution of the linear
di�usion for a set of initial deterministic conditions which we describe. Thus
the absence of phase transition corresponds to the ergodicity of the system.
Moreover, we study the in�uence of a phase transition on the speed of con-
vergence. Finally, we prove that the invariant measures for these gradient
di�usions are exactly the associated Gibbs measures.
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Introduction

The study of lattice random �elds with given conditional Gaussian dis-
tributions was initiated in 1966 by Dobrushin, who built mathematical fun-
dations for the theory of Gibbs measures. In 1980, he proved that these
measures are obtained as mixture of Gaussian �elds with suitable covariance
and mean value. At the same time, the work of Glauber for discrete spin
systems stimulated the study of connections between in�nite gradient type
stochastic di�erential equations and lattice Gibbs measures (see Royer [23]
). The challenge of statistical mechanicians is to identify the three following
sets : Gibbs measures, reversible measures, and stationary measures for the
associated gradient dynamics. It is also interesting to get some informations
about the asymptotic behaviour of the dynamics.

Nowadays, one can assure the identi�cation between reversible measures
of in�nite-dimensional di�usions and Gibbs measures : the pioneer work has
been performed by Doss and Royer [8], and, more recently, Cattiaux, R÷lly
and Zessin [4] have used a new approch based on the study of Gibbs states
on the trajectory space C[0, T ]Zd

. But the conjecture that the stationary
measures under gradient dynamics are Gibbs is unfortunately yet far from
completeness : Holley and Strook [15] studied a special class of symmetric
di�usion processes on the denumerable product of torus UZd

and Fritz [10]
obtained results for translation-invariant measures and some superstable in-
teractions on the one or two dimensional lattice, but without intersection
with the Gaussian case.

In spite of the fact that the gradient dynamics associated to quadratic
interactions are linear ones, the actual knowledge leaves unsolved the asymp-
totic behaviour for nonzero initial conditions in case of phase transition : it
is then one of our new results, presented in this paper � we will see that
in the Gaussian case, phase transition and absence of spectral gap occurs
simultaneously.

The �rst section presents the technical background of our work : we in-
troduce the di�usion equation, the state space in which the process lives and
assumptions satis�ed by the potential. We show existence and uniqueness
of the linear di�usion equation in the appropriate space and compute the
covariance. In section 2, we study the time asymptotic behaviour of the solu-
tion. We prove that every extremal Gibbs measure can be obtained as a limit
of the system in in�nite time for a deterministic initial condition : we exhibit
a subset of the domain of attraction and compute the speed of convergence.
In the last section, we prove that every stationary measure for the gradient
linear dynamics is a Gibbs measure.
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1 Framework

1.1 The di�usion equation and its state space

We denote byWt a family (W i
t )i∈Zd of independent real Brownian motions

de�ned on a probability space (Ω,F , P ). We consider the �ltration (Ft)t≥0

where Ft is the complete σ-algebra generated by the W i
s with i ∈ Zd and

0 ≤ s ≤ t.
When M is a manifold and E a linear topological space, we denote by

Ck(M,E) the set of map from M to E with continuous derivatives of order
k. C(M,E) is the set of continuous map from M to E.

We are interested in the stochastic di�erential system

X i
t = ζ i +W i

t −
1

2

∫ t

0

∑
k∈Zd

J(i− k)Xk
s ds ∀i ∈ Zd, t ∈ R+ (1)

where ζ is a random vector independent fromW and J an even deterministic
sequence. We would like to write it in some in�nite-dimensional linear space E

Xt = ζ +Wt −
1

2

∫ t

0

JXsds, t ∈ R+, (2)

As usually, we have to choose a state space E ⊂ RZd
such that the series

in the right hand-side of (1) is convergent. It's quite natural to make the
following assumptions :

1. t 7→ Wt ∈ C(R+, E) P -almost surely.

2. E contains each �nite sequence. For i ∈ Zd, we denote by ei the se-
quence for which every component vanishes except the i-th which is
equal to 1.

3. For each i ∈ Zd, the canonical projection πi is continuous from E to R.
4. The family (ei)i∈Zd is a weak Schauder basis for E, i.e.

∀x ∈ E, ∀φ ∈ E ′ lim
Λ→Zd

∑
i∈Λ

πi(x)φ(ei) = φ(x) (3)

5. J is a continuous linear operator on E, with πj(Jei) = J(i− j).

We now introduce our choice for E. We �x a p > 0 and de�ne

Bp = {x ∈ RZd

, ‖x‖Bp = sup
k∈Zd

|xk|
(1 + |k|)p

< +∞}
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and

Bp,0 = {x ∈ Bp, lim
|k|→+∞

|xk|
(1 + |k|)p

= 0}.

It's easy to see that Bp,0 is a separable Banach space whose (ei)i∈Zd is a
Schauder basis. We will see that Bp,0 is a convenient choice for E. Let us now
de�ne

Ap = {x ∈ RZd

; ‖x‖Ap =
∑
n∈Zd

(1 + |n|)p|xn| < +∞}

We will always suppose that J is even and J ∈ Ap.
For z = (z1, ..., zd) ∈ Cd and n = (n1, ..., nd) ∈ Zd, we set

zn =
n∏
i=1

zni
i and |n| =

d∑
i=1

|ni|

U = {z ∈ Cd, ∀i ∈ {1, . . . , d} |zi| = 1}

We introduce Ĵ , the Fourier transform or the dual function of J , de�ned on
U by

Ĵ(z) =
∑
n∈Zd

J(n)zn (4)

Since J is summable, it is clear that Ĵ de�nes a continuous map on U. Let
us recall that, for two sequences u = (un)n∈Zd , v = (vn)n∈Zd such that

∀n ∈ Zd
∑
k∈Zd

|ukvn−k| < +∞,

the convolution u ∗ v of u and v is de�ned by

∀n ∈ Zd, (u ∗ v)n =
∑
k∈Zd

ukvn−k.

We recall some results and tools (see [12] for more details).

Lemma 1. (Ap, ‖.‖Ap , ∗) is an unital commutative Banach algebra.

Lemma 2. ∀u, v ∈ Ap
� ∀z ∈ U û ∗ v(z) = û(z)v̂(z)

� exp(û) = êxp(u) on U.
� u invertible ⇐⇒ û does not vanish on U
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1.2 Some results on Gaussian Gibbs measures

In the present paper, a probability measure on a topological space Ω en-
dowed with its borelian algebra is simply called a measure on Ω. We denote
by P(Ω) the set of measures on Ω. As usually, for x ∈ Ω, the Dirac measure
at point x is denoted by δx.

Let us introduce the concept of Gibbs measure on Ω = RZd
. Each ω ∈ Ω

can be considered as a map from Zd to R. For a �nite subset Λ of Zd, we will
denote ωΛ its restriction to Λ. Then, when A and B are two disjoint subsets
of Zd and (ω, η) ∈ RA × RB, ωη denotes the concatenation of ω and η, that
is the element z ∈ RA∪B such that

zi =

{
ωi if i ∈ A

ηi if i ∈ B

For �nite subset Λ of Zd, we suppose that a function ΦΛ has been de�ned,
which is measurable with respect to the σ-�eld generated by {πi, i ∈ Λ}.
A collection (ΦΛ)Λ of such functions is said to be an potential. For a �nite
subset Λ of Zd, the quantity

HΛ =
∑

B: B∩Λ 6=∅

ΦB

is called the Hamiltonian on the volume Λ. Usually, HΛ can be de�ned only
on a subset of RZd

. We suppose that there exists a subset Ω̃ of Ω such that

∀ �nite Λ ∀ω ∈ Ω̃
∑

B: B∩Λ6=∅

|ΦB(ω)| < +∞

We now de�ne the so-called partition function ZΛ : denoting by λ the
Lebesgue's measure on the real line, we set

ZΛ(ω) =

∫
RΛ

exp(−HΛ(ηΛωΛc))dλ⊗Λ(ηΛ)

By convention, we set exp(−HΛ(ηΛωΛc)) = 0 when the Hamiltonian is not
de�ned. We suppose that for each ω in Ω̃, we have 0 < ZΛ(ω) < +∞. Then,
we can de�ne for each bounded measurable function f on Ω and for each
ω ∈ Ω̃,

ΠΛf(ω) =

∫
RΛ exp(−HΛ(ηΛωΛc))f(ηΛωΛc)dλ⊗Λ(ηΛ)

ZΛ(ω)
.
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If a measure µ on Ω is such that µ(Ω̃) = 1, we say that µ is a Gibbs
measure associated to the potential Φ when, for each bounded measurable
function f and each �nite subset Λ of Zd, we have

Eµ(f |(Xi)i∈Λc) = ΠΛf µ a.s.

The random dynamics introduced in (1) is related with the Gibbs measures
associated to the potential ΦJ de�ned on Ω by

ΦJ
Λ(ω) =


1
2
J(0)ω2

i if Λ = {i}
J(i− j)ωiωj if Λ = {i, j}, i 6= j

0 otherwise

(5)

Then, the corresponding Hamiltonian function is equal to

HΛ(ω) =
1

2

∑
i∈Λ

∑
j∈Λ

J(i− j)ωiωj +
∑

i∈Λ,j∈Λc

J(i− j)ωiωj. (6)

It is clear that HΛ is well de�ned on Ω̃, if we choose :

Ω̃ = {ω ∈ RZd

; ∀i ∈ Zd,
∑
j∈Zd

|J(i− j)ωj| < +∞}.

We denote by GJ the set of Gibbs measures on RZd
associated to the

potential given in (5). If GJ contains more than one point, we say that phase
transition occurs. As each set of Gibbs measures, GJ is a convex set whose
extreme points are called pure phases. (For general results on Gibbs measures,
see [13].) Dobrushin and Kunsch gave the following description of GJ :

Proposition 1. GJ contains at least one element if and only if the following
conditions are ful�lled

1. Ĵ(U) ⊂ R+

2.
∫
U

1

Ĵ(z)
dz <∞, where dz is the normalized Haar measure on the torus U.

In this case, GJ is described as follows :

GJ = {µ∞ ∗m; m ∈ P(Ω) and m(MJ
0 ) = 1}, (7)

where µ∞ is the centered Gaussian measure with 1

Ĵ
as spectral density and

MJ
0 = {ω ∈ Ω̃; ∀i ∈ Zd,

∑
j∈Zd

J(i− j)ωj = 0} (8)

The pure phases are obtained when m is reduced to a Dirac measure.
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Remark 1. The choice of the space state is not unique and is itself an
element in the de�nition of Gibbs measure. By chance, we have here Bp,0 ⊂ Ω̃
and it comes immediately from the de�nition that Bp,0-Gibbs measures are
exactly Ω̃-Gibbs measure with their support in Bp,0. Moreover, let µ ∈ P(Bp,0)
be a Gibbs measure for J : it can be written if the form µ = µ∞ ∗ m, with
m(MJ

0 ) = 1. By the lemma of Borel-Cantelli, it is not di�cult to see that
µ∞(Bp,0) = 1. It follows that m(Bp,0) = 1. In other words,

GJ ∩ P(Bp,0) = {µ∞ ∗m; m ∈ P(Bp,0) and m(ker J) = 1}, (9)

with
ker J = Bp,0 ∩MJ

0 .

Remark 2. In a previous paper [12] , we have shown the following result :

Proposition 2. Let p > 0 and J ∈ Ap.

GJ ∩ P(Bp) contains exactly one element if and only if Ĵ > 0 on U.
Then, GJ ∩ P(Bp) = {µ∞}.

1.3 Existence of the in�nite-dimensional di�usion and

�rst properties

The next lemma shows some properties of J as operator.

Lemma 3. Let J be an even sequence in Ap. Then J induces an operator J̃
on Bp such that πj(J̃ei) = J(i− j), which maps Bp,0 into itself and satis�es

‖J̃‖L(Bp) = ‖J̃‖L(Bp,0) = ‖J‖Ap .

Démonstration. The proof is classic. The key point is the inequality
(1 + |i+ j|)p ≤ (1 + |i|)p(1 + |j|)p.

Remark 3. This justi�es the notation ker J = {u ∈ Bp,0, Ju = 0}.

Lemma 4. For P-almost every ω, t 7→ Wt ∈ C(R+, Bp,0) holds .

Démonstration. Let Λn be an increasing sequence of �nite subsets of Zd such

that lim ↑
n→∞

Λn = Zd. We denote by nW the process de�ned by nW i = W i

if i ∈ Λn, 0 else. nWt takes its values in a �nite dimensional space, and
has almost-surely continuous coordinates. Then, t 7→n Wt ∈ C(R+, Bp,0)
P-a.s. for each n. It su�ces to prove that for almost every ω, nWt(ω) con-
verges uniformly toWt(ω) on every compact subset of R+. We will show that
P (∩p∈N,q∈Q+

∗
Rs,q) = 1, where

Rs,q = {ω : limn→∞ sup
t∈[0,s]

‖nWt −Wt‖ ≤ q}.
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But supt∈[0,s] ‖nWt − Wt‖ = supt∈[0,s] supi/∈Λn

|W i
t |

(1+|i|)p = supi/∈Λn

Si
s

(1+|i|)p , with

Sis = supt∈[0,s] |W i
t |. Thus, the complement of Rs,q is

Cp,q = {ω : Sis > q(1 + |i|)p i.o.}.

Now, using the famous inequality P (Sis > q(1 + |i|)p) ≤ 2 exp(− (q(1+|i|)p)2
2s

)

and the fact that (1 + |i|)p �
√
ln i, the result follows from Borel-Cantelli's

lemma.

Remark 4. The same arguments prove that every centered Gaussian se-
quence (Xn)n∈Zd with bounded variances belongs to P(Bp,0). Particularly,
µ∞ ∈ P(Bp,0).

We need the next lemma about a deterministic equation to prove the
existence and uniqueness of the solution of the s.d.e. (1).

Lemma 5. Let E be a Banach space, w ∈ C(R+, E), J a continuous operator
in E and ζ ∈ E. Then, the integral equation

x(t) = ζ + w(t)−
∫ t

0

J

2
x(s) ds

admits an unique solution x ∈ C(R+, E) : it is given by

x(t) = exp(−tJ
2
)ζ + w(t)− J

2

∫ t

0

exp(−(t− s)
J

2
)w(s) ds

Démonstration. Existence and uniqueness of a solution follows from Picard's
�xed point theorem on C([0, T ], E).

Notation : If f is a borelian measurable map from Ω into Ω′ and µ a measure
on Ω, the distribution of f under µ is the pushforward measure fµ � also
denoted by µf , specially when Ω is an abstract space and when f is said to be
a random variable � de�ned on Ω′ by fµ(A) = µ(f−1(A)), for each borelian
set A.

Theorem 1. Let (Ω,F , P ) be a probability space, (W i)i∈Zd a family of P -
independent Brownian motions and J ∈ Ap. Then, for each Bp,0-valued ran-
dom variable ζ independent of (W i)i∈Zd, there exists a unique Bp,0- valued
process Xt with continuous paths which is solution to the di�usion equation
(1) . It is given by

Xt(ω) = e−t
J
2 ζ(ω) +Wt(ω)−

J

2

∫ t

0

e−(t−s)J
2Ws(ω) ds (10)
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Xt is a (Ft)-adapted Markov process. For an initial law ν, the law of the
process at time t is given by the following kernel :

Ttν = (exp(− t

2
J)ν) ∗ µt, t ≥ 0, (11)

where µt denotes the law at time t of the solution with 0 as initial condition.

Démonstration. Let Ω1 = {ω : t 7→ Wt(ω) ∈ C(R+, E)}. Let us de�ne, for
ω ∈ Ω1

Xt(ω) = e−t
J
2 ζ(ω) +Wt(ω)−

J

2

∫ t

0

e−(t−s)J
2Ws(ω) ds

andXt(ω) = 0 for ω ∈ Ω\Ω1, the process (Xt) is well de�ned, and by lemma 5,
it follows that Xt veri�es (on Ω1, then a.s.) the smoothness conditions and
the integral equation it was asked for. Now, let (X ′) be another solution : we
set

Ω2 = {ω : t 7→ X ′
t(ω) ∈ C(R+, E)and Xt = ζ +Wt −

∫ t

0

J

2
Xsds ∀t ∈ R+}.

By the uniqueness part in lemma 5, t 7→ Xt(ω) and t 7→ X ′(ω) coincide for
ω ∈ Ω1∩Ω2. Since P (Ω1∩Ω2) = 1, these are indistinguishable processes.

De�nition : Let X and Y be E-valued random variables whose norm
admit a second moment. We de�ne the covariance CX,Y of X and Y as a
continuous linear quadratic form on E ′ × E ′, where E ′ is endowed with the
∗-weak topology.

(φ, ψ) ∈ E ′ × E ′ 7→ CX,Y (φ, ψ) = Eφ(X)ψ(Y ).

Lemma 6. For each q ≥ 1, there exists a positive constant Mq such that for
each σ ≥ 0 and every sequence X = (Xn)n∈Zd of centered Gaussian random
variables satisfying to

∀n ∈ Zd EX2
n ≤ σ2,

it comes
E‖X‖qBp

≤Mqσ
q. (12)

Démonstration.

E‖X‖qBp
=

∫ +∞

0

q tq−1P (‖X‖Bp > t) dt.

≤ σq(1 +

∫ +∞

1

q tq−1P (‖X‖Bp > σt) dt).
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P (‖X‖Bp > σt) = P (∪n∈Zd{|Xn| > t(1 + |n|)pσ})

≤
∑
n∈Zd

P (|Xn| > t(1 + |n|)pσ).

Since P (|Xn| > t(1 + |n|)pσ) ≤ 2√
2πt(1+|n|)p exp(−

(t(1+|n|)p)2
2

), it su�ces to

prove that∑
k∈Zd

1
(1+|n|)p

∫ +∞
1

tq−2 exp(− (t(1+|n|)p)2
2

) dt < +∞.

But since (1 + |n|)p ≥ 1,∫ +∞

1

tq−2 exp(−(t(1 + |n|)p)2

2
) dt ≤

(∫ +∞

1

tq−2 exp(−t
2

4
) dt

)
exp(−((1 + |n|)p)2

4
)

Since (1 + |n|)p �
√
lnn, we may conclude.

We will note
〈., .〉 = CW1,W1(., .).

It is easy to see that

∀s, t ≥ 0 CWs,Wt(., .) = inf(s, t)〈., .〉.

For J ∈ L(E,E) and φ ∈ E ′, we de�ne J.φ ∈ E ′ by

∀x ∈ E (J.φ)(x) = φ(Jx).

It is easy to see that the operator induced by an even sequence J in Ap is
symmetric with respect to 〈, 〉 :

∀φ, ψ ∈ E ′ 〈J.φ, ψ〉 = 〈φ, J.ψ〉.

Proposition 3. Let J be an even sequence in Ap and (Xt)t≥0 the solution
in Bp,0 to the s.d.e. (1) with initial condition 0. Then, the covariance of X
is given by

∀t ≥ 0 ∀φ, ψ ∈ E ′ CXt,Xt(φ, ψ) = 〈Vt.φ, ψ〉,

where

Vt =

∫ t

0

exp(−sJ)ds.

Furthermore, Xt admits ∫ t

0

exp(−sĴ) ds (13)

as spectral density.
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Démonstration. Since we have the explicit formula (10), the existence of the
covariance is obvious and its computation is easy. The exact computation of
Vt can be found in [11]. Now, �rst remark that when CY,Y (φ, ψ) = 〈B.φ, ψ〉
and when B is the Toeplitz operator associated to the even sequence b ∈ Ap,
i.e. with πi(Bej) = b(i− j), it comes

EYiYj = CY,Y (πi, πj) = 〈B.πi, πj〉 = (B.πi)(ej)

= πi(Bej) = B(i, j) = b(i− j)

=

∫
U
b̂(z)dz

Since ̂∫ t
0
exp(−sJ) ds =

∫ t
0
exp(−sĴ) ds, we can conclude.

2 Time Asymptotics

The �rst step in the study of the asymptotic behaviour of the di�usion
Xt solution of (1) is the study of the law µt of the solution of (1) with initial
condition 0. When J has �nite support, the asymptotic behaviour of µt has
been studied by Deuschel in [7]. However, he studies the convergence with
respect to the product topology in RZd

but we use here the topology of Bp,0.
Moreover, we are interested in the speed of convergence. Therefore, we need
some tools.

2.1 Metrization of the convergence

We denote by R2 the following set of test functions

R2 =

{
f ∈ C2(Bp,0,R)
supx∈Bp,0

|f(x)|+ supx∈Bp,0
‖Dxf‖+ supx∈Bp,0

‖D2
xf‖ ≤ 1

}
where we set

‖Dk
x‖ = sup{|Dk

x(h1 ⊗ · · · ⊗ hk); ‖hi‖Bp,0 ≤ 1,∀i ∈ {1, . . . , k}}

Finally, we de�ne for each µ, ν ∈ P(Bp,0) :

d(µ, ν) = sup
f∈R2

|
∫
f dµ−

∫
f dν| (14)

Since Bp,0 is separable, the distance d metrizes the weak convergence in
P(Bp,0).
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Lemma 7.

∀µ1, µ2, ν1, ν2 ∈ P(Bp,0) d(µ1 ∗ µ2, ν1 ∗ ν2) ≤ d(µ1, ν1) + d(µ2, ν2) (15)

Démonstration. See [2], page 37.

Lemma 8. Let µ1, µ2 be Gaussian centered measures on Bp admitting φ1

and φ2 as spectral density. Then

d(µ1, µ2) ≤M2‖φ1 − φ2‖1,

where

‖φ1 − φ2‖1 =
∫
U
|φ1(z)− φ2(z)| dz

and M2 is the constant appearing in (12) for q = 2.

Démonstration. Let (Ω, F, P ) be a space with a probability measure support-
ing independent centered random variables X, Y, Z, T such that PX = µ1,
PY = µ2 ant that the law of Z (resp. of T ) under P is the centered Gaussian
law with (φ1 − φ2)

− (resp. (φ1 − φ2)
+ as spectral density. Let f ∈ R2. We

have

∫
f dµ1 −

∫
f dµ2 = Ef(X)− Ef(Y )

= (Ef(X)− Ef(X + Z))

+ (Ef(X + Z)− Ef(T + Y ))

+ (Ef(T + Y )− Ef(Y ))

But X+Z and T +Y are Gaussian, centered, and have the same spectral
density φ1 + (φ1 − φ2)

− = (φ1 − φ2)
+ + φ2 : then, they have the same law. In

particular, Ef(X + Z) = Ef(T + Y ), and then

Ef(X)− Ef(Y ) = (Ef(X)− Ef(X + Z)) + (Ef(T + Y )− Ef(Y ))

By Taylor's formula in Banach spaces, (see for example [3], p. 77),

f(T + Y )− f(Y ) = DfY (T ) +

∫ 1

0

(1− t)D2fY+tT (T ⊗ T ) dt

Hence

Ef(Y + T )− Ef(Y ) = EDfY (T ) + E
∫ 1

0

(1− t)D2fY+tT (T ⊗ T ) dt
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Since Df is bounded and since Y and T are independent variables, we have

EDfY (T ) = EDfY (ET ) = EDfY (0) = 0.

Moreover, ‖D2f‖ ≤ 1, so that

|D2fY+tT (T ⊗ T )| ≤ ‖T‖2

and we obtain

|Ef(T + Y )− Ef(Y )| ≤ 1

2
E‖T‖2.

By the same way |Ef(X + Z) − Ef(X)| ≤ 1
2
E‖Z‖2. By lemma 6, we get

E(‖Z‖2Bp
) ≤M2‖(φ1 − φ2)

−‖1
and E(‖T‖2Bp

) ≤M2‖(φ1 − φ2)
+‖1. Now

|Ef(X)− Ef(Y )| ≤M2‖(φ1 − φ2)
−‖1 +M2‖(φ1 − φ2)

+‖1 =M2‖φ1 − φ2‖1

We conclude that d(µ1, µ2) ≤M2‖φ1 − φ2‖1.

2.2 Asymptotics with zero as initial condition

We now look at the asymptotic behaviour of µt.

Theorem 2. The following assertions are equivalent :

1. (µt) has a limit point when t tends to +∞.

2. limt→+∞
∫
Bp,0

(π0(x))
2 dµt(x) < +∞.

3. GJ is not empty.

4. (µt) converges in P(Bp,0) when t tends to +∞.

When one of these conditions is full�lled, µt converges to µ∞, the Gaussian
measure on RZd

with 1

Ĵ
as spectral density.

Démonstration. 1.⇒ 2. If (µt) has a limit point when t tends to +∞, so does
(π0µt). But a convergent subsequence of Gaussian r.v. has bounded variances.
Hence, 2. follows.
2.⇒ 3. ∫

(π0(x))
2 dµt(x) =

∫ t

0

∫
U
e−tĴ(z) dz dt ≥ tχ(Ĵ ≤ 0),

when χ is the normalized Haar measure on U. Then, Ĵ is a.e. positive,
and � since it is continuous � always nonnegative. Since Ĵ is a.e. positive,
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1−exp(−tĴ(z))
Ĵ(z)

is a nice expression for the spectral density of µt. Now, by Fatou's

lemma∫
U

1

Ĵ(z)
dz ≤ limt→∞

∫
U

1− exp(−tĴ(z))
Ĵ(z)

dz = limt→∞

∫
(π0(x))

2 dµt(x) < +∞

Now, Proposition 1 implies that GJ is not empty.
3. ⇒ 4. Always by Proposition 1, Ĵ is nonnegative and 1

Ĵ
integrable. There-

fore, Ĵ is a.e. positive. Since µt (resp. µ∞)admits 1−exp(−tĴ)
Ĵ

(resp. 1

Ĵ
) as spec-

tral density, it follows from lemma 8 that

d(µt, µ∞) ≤M2

∫
U

exp(−tĴ(z))
Ĵ(z)

dz

The right-handside tends to zero by dominated convergence.
4.⇒ 1. Obvious.

From now on, we will suppose that assumptions of Theorem 2 are full�lled.

2.3 Exponential bounds in Ap

Lemma 9. Let k ∈ Z+ et f ∈ Ck(U,C). For each n ∈ Zd+ such that |n| ≤ k,
there exists a function gn ∈ C∞(R+ × U,C) such that

∂n exp(−tf) = exp(−tf)gn(t, .)

and
‖gn(t, .)‖∞ = O(t|n|).

Démonstration. We get the proof by natural induction on |n| with the help
of the multivariate Leibnitz formula.

Notation : For f ∈ CN(U,C), we de�ne

‖f‖DN = max{|∂kf(x)|; x ∈ U, |k| ≤ N}.

Lemma 10. Let k ∈ Z+ such that 2k > d
2
+ p ; then

∀f ∈ C2k(U,C) ∃!F ∈ Ap f = F̂ .

Moreover, there exists a constant K such that

‖F‖Ap ≤ K‖(1−∆)kf‖L2(U).

14



Démonstration. If such a sequence F exists, it necessary satis�es to Fn =
〈f, χn〉, where χn(z) = zn. Then, let us de�ne F in such a way.

Fn = 〈f, χn〉 =
1

(1 + |n|2)k
〈f, (1 + |n|2)kχn〉

=
1

(1 + |n|2)k
〈f, (1−∆)kχn〉

=
1

(1 + |n|2)k
〈(1−∆)kf, χn〉

Hence (1+ |n|)pFn = (1+|n|)p
(1+|n|2)k 〈(1−∆)kf, χn〉, and next, by Cauchy-Schwarz :

‖F‖Ap ≤
( ∑
n∈Zd

(1 + |n|p)2

(1 + |n|2)2k
) 1

2‖(1−∆)kf‖L2(U)

Lemma 11. Let φ ∈ Ap such that φ̂ ∈ C2k(U,C), where k is an integer such
that 2k > d

2
+ p. Then

1. ∀F ∈ Ap, ∀ε > 0, we have

‖φ ∗ exp(−tF )‖Ap = o(e−(mφ(F )−ε)t),

where
mφ(F ) = inf{Re F̂ (z); z ∈ supp φ̂}.

2. When F̂ ∈ C2k(U,C), we can be more precise : there exists a constant
KF,k,p independent from φ such that

∀t ≥ 0 ‖φ ∗ exp(−tF )‖Ap ≤ KF,k,p‖φ̂‖D2kt2ke−mφ(F )t.

Démonstration. We �rst prove the second part of the lemma : let F be such
that F̂ ∈ C2k(U,C). By lemma 10, we have

‖φ ∗ exp(−tFn)‖Ap ≤ K‖(1−∆)k(φ̂ exp(−tF̂n))‖L2(U)

≤ K sup{|(1−∆)k(φ̂ exp(−tF̂n))(z)|, z ∈ supp φ̂}

If we expand (1−∆)k by Newton's formula, and next by Leibnitz's, we obtain
the existence of a constant K(1) such that

∀f, g ∈ C2k(U,C) ‖(1−∆)kfg‖∞ ≤ K(1)‖f‖D2k max{|∂ig(x)|;x ∈ supp f, |i| ≤ 2k}.
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Thus, we get

‖φ ∗ exp(−tFn)‖Ap ≤ KK(1) max
|i|≤2k

‖gi(t, .)‖∞‖φ̂‖D2k(e−mφ(F )t)

≤ KF,k,p‖φ̂‖D2kt2ke−mφ(F )t,

The last inequality comes from lemma 9, and the step 2. is done..
Next go to the general case : let F ∈ Ap. For n ∈ Z+, set Fn(i) = F (i) if

|i| ≤ n, 0 else. Obviously, F̂n is C
∞ and Fn tends to F . Let us choose n such

that ‖F − Fn‖Ap < ε/3. We have

|mφ(Fn)−mφ(F )| ≤ ‖F̂n − F̂‖∞ ≤ ‖Fn − F‖Ap <
ε

3

and
φ ∗ exp(−tF ) = φ ∗ exp(−tFn) ∗ exp(t(Fn − F ))

Hence

‖φ ∗ exp(−tF )‖Ap ≤ ‖φ ∗ exp(−tFn)‖Ap‖ exp(t(Fn − F ))‖Ap

≤ ‖φ ∗ exp(−tFn)‖Ape
‖Fn−F‖Ap t

Now,
‖φ ∗ exp(−tF )‖Ap ≤ KFn,k,p‖φ̂‖D2kt2ke−(mφ(F )− 2

3
ε)t,

which achieves the proof.

2.4 Spectral analysis

De�nitions : For u ∈ Bp, we de�ne ũ ∈ A′
p by

∀x ∈ Ap ũ(x) =
∑
n∈Zd

unxn,

and we call spectral support of the sequence u the following subset of U :

spec u = supp ũ = { ∪O∈Ou O,

where

Ou = {O open set in U , ∀f ∈ Ap supp f̂ ⊂ O ⇒ ũ(f) = 0}.

It is easy to check that

∀u ∈ Bp,∀λ ∈ C− {0} spec (λu) = spec u

16



and
∀u, v ∈ Bp spec (u+ v) ⊂ spec u ∪ spec v

Fundamental example : Let u be de�ned by un = zn, with a �xed z ∈ U.
We will prove that spec u = {z}. First show z ∈ spec u. Let O be an open
set containing z. We can �nd f of class C∞, such that f(z) = 1 and whose
support is a subset of O. Now, we get J ∈ Ap such that f = Ĵ :

ũ(J) =
∑
n∈Zd

J(n)zn = Ĵ(z) = f(z) = 1,

which proves that O /∈ Ou. Then, no element in Ou can contain z i.e. z ∈
spec u. Conversely, let x ∈ U\{z}. We can �nd a neighbourhood O of x
which does not contain z. Now, let J ∈ Ap such that supp Ĵ ⊂ O : thus

ũ(J) = Ĵ(z) = 0, since z is not in O, a fortiori not in the support of Ĵ . This
proves that O ∈ Ou, and hence x /∈ spec u, since x ∈ O.

Lemma 12.

u 7→ ũ isometrically maps Bp into A
′
p.

Démonstration. It is equivalent to the well-known fact that the set of bounded
sequences is the dual of the set of absolutely convergent series.

Lemma 13.

For an even sequence A ∈ Ap and u ∈ Bp, we have Ãu = A.ũ

Lemma 14. For each u ∈ Bp, Ou is stable under union.

Démonstration. Since the proof is well-known in the context of distributions,
we will omit it. The key is that the Banach algebra of functions Âp allows to
separate a point from a compact set, and then we can exhibit a partition of
unity. Such Banach algebras are said to be regulars ( see [17], chap VIII).

Lemma 15. Let f, g ∈ Ap and ũ ∈ A′
p. If f̂ and ĝ coincide on a neighborhood

of supp ũ, then ũ(f) = ũ(g).

Démonstration. By linearity, we may assume g = 0. Let V be an open set
containing supp ũ on which Ĵ identically vanishes : then

supp f̂ ⊂ {V ⊂ ∪O∈OuO = O′.

By lemma 14, O′ ∈ Ou, then, by de�nition of Ou, we get ũ(f) = 0.

17



2.5 Asymptotics for nonzero initial condition

Notations : We denote by ΥJ the map from Bp,0 to [0,+∞] de�ned by

ΥJ(u) = inf{Ĵ(z); z ∈ spec u}.

For τ > 0, we set

EJ,τ = {v ∈ Bp,0; ΥJ(v) ∈ [τ,+∞]}.

We can now claim the main theorem of this section.

Theorem 3. Let J be a potential in Ap. For x ∈ Bp,0, let us denote by µxt
the law at time t of the s.d.e. (1) with initial condition ζ = x.

1. Asymptotic behaviour
If x has the following decomposition x = u + s with s ∈ ker J and
inf{Ĵ(z); z ∈ spec u} > 0, then we have

µxt ⇒
t→+∞

τsµ∞,

where τsµ∞ is the image of µ∞ by the translation τs by vector s.

2. Speed of convergence in case of uniqueness of the Gibbs measure
If Ĵ is strictly positive, there is uniqueness of the Gibbs measure. Let
a = infU Ĵ > 0. Then, for each b < a, we can �nd a constant Lb such
that

∀x ∈ Bp,0 ∀t ≥ 0 d(µxt , µ) ≤
M2

a
e−at + Lb‖x‖Bpe

− b
2
t,

where M2 has been de�ned in lemma 8.

3. Speed of convergence in case of phase transition
We suppose that

{z ∈ U; Ĵ(z) = 0} = {(1, . . . , 1)}

and that there exists A ∈ Gld(R) and d0 < d such that the following
equivalence holds at point 0 :

f(x) ∼ ‖Ax‖d0 ,

where
f(θ1, . . . , θd) = Ĵ(eiθ1 , . . . , eiθd).

Then, there exists constants K and L such that, if x ∈ Ba,0 satis�es

x = u+ s with s ∈ ker J and inf{Ĵ(z); z ∈ spec u} > 0, we have

K ≤ limt→∞d(µ
x
t , τsµ)t

d
d0

−1 ≤ limt→∞d(µ
x
t , τsµ)t

d
d0

−1 ≤ L. (16)
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Let us �rst make some remarks.

Remark 5. The set of fastly decreasing sequences can be written in the form
S(Zd) = ∩p∈Z+Ap : the family of norms (‖.‖Ap)p∈Z+ induces the usual Frechet
space topology on S(Zd). Conversely, the set of slowly increasing sequence can
be written S ′(Zd) = ∪p∈Z+Bp,0 and the family of norms (‖.‖Bp,0)p∈Z+ induces
its usual topology as Frechet space. Therefore, Theorem 3 can be reformulated
with J ∈ S(Zd) and x ∈ S ′(Zd), but the initial form is of course more precise.

Démonstration. The main step is contained in the following lemma.

Lemma 16. 1. Let u ∈ Bp,0 admitting the decomposition u = v + s with
s ∈ ker J . Then, for each ε > 0 :

‖ exp(−tJ)u− s‖Bp = o(e−(ΥJ (v)−ε)t).

2. If Ĵ ∈ C2k(U,C), with 2k > d
2
+p, we can be more precise : there exists

a constant K ′
J,k,p such that

∀u ∈ Bp,0, u = v + s, s ∈ ker J

∀t ≥ 1 ‖ exp(−tJ)u− s‖Bp ≤ K ′
J,k,p‖v‖Bpt

4ke−ΥJ (v)t.

Démonstration. At �rst, exp(−tJ)u = exp(−tJ)v + exp(−tJ)s. But since
Js = 0, we have exp(−tJ)s = s and it just remains to control exp(−tJ)v.
Now

‖ exp(−tJ)v‖Bp = ‖ exp(−tJ).ṽ‖A′
p
= sup

‖φ‖Ap≤1

|ṽ(exp(−tJ) ∗ φ)|

Let ψ̂ be a C2k-smooth function with 2k > d
2
+ p which is equal to 1 on

{z ∈ U Ĵ(z) ≥ ΥJ(v)−
ε

4
}

and vanishes on
{z ∈ U Ĵ(z) ≤ ΥJ(v)−

ε

2
}.

By lemma 10, ψ̂ is the Fourier transform of a sequence ψ ∈ Ap. We have

supp ṽ ⊂ {z ∈ U; Ĵ(z) ≥ ΥJ(v)}.
Since Ĵ is continuous, {z ∈ U Ĵ(z) ≥ ΥJ(v) − ε

4
} is a neighborhood of

supp ṽ and it follows by lemma 15 that

ṽ(exp(−tJ) ∗ φ) = ṽ(ψ ∗ exp(−tJ) ∗ φ)
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Now
|ṽ(ψ ∗ exp(−tJ) ∗ φ)| ≤ ‖ṽ‖A′

p
‖ψ ∗ exp(−tJ)‖Ap‖φ‖Ap (17)

Hence, we have

‖ exp(−tJ)v‖Bp ≤ ‖v‖Bp‖ψ ∗ exp(−tJ)‖Ap

But mψ(J) ≥ ΥJ(v)− ε
2
, and the �rst desired assertion follows from the �rst

part of lemma 11. Now, we must be more precise to get the second desired
result : we have to control the right-hand-side of (17), and, therefore, to
choose φ and ε in a nice way.

Let Ψ be a C∞(R,R) function mapping ]−∞, 0] to 0 and [1,+∞[ to 1.
For real numbers a, b such that a < b, we de�ne

Ψa,b(x) = Ψ(
x− a

b− a
),

in that way that Ψa,b is a C∞(R,R) function mapping ] − ∞, a] to 0 and
[b,+∞[ to 1. It is easy to see that, for each i ≥ 0,

sup
R

|Ψ(i)
a,b| =

1

(b− a)i
sup
R

|Ψ(i)|.

Moreover, there exists a constant MN such that for each g ∈ C∞(R,R) and
each f ∈ CN(U,R), we have

‖g ◦ f‖DN ≤MN‖f‖DN max
0≤i≤N

sup
R

|g(i)|.

We now put
ψ̂ = Ψτ− ε

2
,τ− ε

4
◦ Ĵ ,

with the notation τ = ΥJ(v). ε is not yet determined. It comes

‖ψ̂‖D2k ≤ M2k‖Ĵ‖D2k max
0≤i≤2k

sup
R

|Ψ(i)
τ− ε

2
,τ− ε

4
|

≤ M2k‖Ĵ‖D2k max
0≤i≤2k

(
4

ε
)i sup

R
|Ψ(i)|

≤ M2k‖Ĵ‖D2k max(1, (
4

ε
)2k) max

0≤i≤2k
sup
R

|Ψ(i)|

Let t ≥ 1 be a �xed number. Now, we put ε = 4
t
, and apply the second part

of lemma 11 to control ‖ψ ∗ exp(−tJ)‖Ap : we have

mψ(J) ≥ ΥJ(v)−
ε

2
= ΥJ(v)−

2

t
,
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from which follows

‖ exp(−tJ)u− s‖Bp ≤ K ′
J,k,p‖v‖Bpt

4ke−ΥJ (v)t,

with
K ′
J,k,p = e2KJ,k,pM2k‖Ĵ‖D2k max

0≤i≤2k
sup
R

|Ψ(i)|.

Now, since

d(µxt , τsµ∞) = d(τsτ
e−t J2 u

µt, τsµ∞)

= d(τ
e−t J2 u

µt, µ∞)

we get

|d(µxt , τsµ∞)− d(µt, µ∞)| ≤ d(τ
e−t J2 u

µt, µt) ≤ ‖e−t
J
2 u‖Bp

By lemma 16 and theorem 2, we get the �rst assertion of the lemma.
In case of uniquess, we have

d(µxt , µ∞) ≤ d(µt, µ∞)+‖e−t
J
2 x‖Bp ≤M2

∫
U

exp(−tĴ(z))
Ĵ(z)

dz+‖e−t
J
2 ‖Ap‖x‖Bp

Using lemma 11 and the fact that Ĵ ≥ a, we get the desired speed of
convergence.

In order to determinate the speed of convergence in case of phase transi-
tion, we will use a lemma in the spirit of the Laplace method.

Lemma 17. We suppose that

{z ∈ U; Ĵ(z) = 0} = {(1, . . . , 1)}

Let A ∈ Gld(R) and d0 < d. We de�ne a function f by :

f(θ1, . . . , θd) = Ĵ(eiθ1 , . . . , eiθd).

We have the following results :

1. If
limx→0f(x)‖Ax‖−d0 ≥ 1,

then

limt→∞

∫
U

e−tĴ(z)

Ĵ(z)
dz t

d
d0

−1 ≤ 1

detA

Kd

(2π)d
Γ(

d

d0
− 1) (18)
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2. If
limx→0f(x)‖Ax‖−d0 ≤ 1,

then

limt→∞

∫
U

e−tĴ(z)

Ĵ(z)
dz t

d
d0

−1 ≥ 1

detA

Kd

(2π)d
Γ(

d

d0
− 1), (19)

where the constant Kd only depends from the lattice dimension d.

Démonstration. Since the proof of (19) is similar to proof of (18), we will only
prove (18). As usually B(r) = {x ∈ Rd; ‖x‖2 ≤ r}, where ‖.‖2 is the canonical
euclidian norm in Rd. Then, let us suppose that limx→0f(x)‖Ax‖−d0 ≥ 1. For
each ε > 0, we can �nd α < 1 such that

‖Ax‖ ≤ α =⇒ f(x) ≥ (1− ε)‖Ax‖d0

Since f does not vanish on the closure of [−π, π]d\A−1 B(α), we have
b = infA−1 B(α) f > 0, and∫

U

e−tĴ(z)

Ĵ(z)
dz =

1

(2π)d

∫
A−1 B(α)

1

f(x)
e−tf(x) dx+O(e−bt)

We have

1

(2π)d

∫
A−1 B(α)

1

f(x)
e−tf(x) dx =

1

(2π)d
1

detA

∫
B(α)

1

f(A−1x)
e−tf(A

−1x) dx

≤ 1

(2π)d
1

detA

1

1− ε

∫
B(α)

1

‖x‖d0
e−t(1−ε)‖x‖

d0 dx

≤ 1

(2π)d
1

detA

1

1− ε
Kd

∫ α

0

rd−1 1

rd0
e−t(1−ε)r

d0 dr,

where Kd is the surface of the unit sphere of Rd.
By the change of variable u = (1− ε)rd0 , we get∫ α

0

rd−1 1

rd0
e−t(1−ε)r

d0 dr = (1− ε)
− d

d0
+1 1

t
d
d0

−1

∫ (1−ε)tαd0

0

e−uu
d
d0

−2
du

Since limt→∞
∫ (1−ε)tαd0

0
e−uu

d
d0

−2
du = Γ( d

d0
− 1), we deduce

limt→∞

∫
U

e−tĴ(z)

Ĵ(z)
dz t

d
d0

−1 ≤ 1

detA
Γ(

d

d0
− 1)

Kd

(2π)d
1

(1− ε)
d
d0
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Since ε > 0 is arbitrary,it gives

limt→∞

∫
U

e−tĴ(z)

Ĵ(z)
dz t

d
d0

−1 ≤ 1

detA
Γ(

d

d0
− 1)

Kd

(2π)d
. (20)

Now, using the same inequalities as before and the �rst part of lemma 17,
we see that we can take for the constant in (16) K =M2

1
detA

Kd+1

2π
Γ( d

d0
− 1).

Let us show the second inequality in (16) : by the second part of lemma 17,
it su�ces to prove the existence of a constant N > 0 such that

∀t > 0 d(µt, µ) ≥ N‖Φt − Φ∞‖1, (21)

with Φt(z) = 1

Ĵ(z)
(1 − e−tĴ(z)) and Φ∞(z) = 1

Ĵ(z)
. Let σ2

∞ = ‖Φ∞‖1 and

σ2
t = ‖Φt‖1. Since Φ∞ ≥ Φt, ‖Φt − Φ∞‖1 = ‖Φ∞‖1 − ‖Φt‖1 = σ2

∞ − σ2
t .

This simple remark will be important. Let φ ∈ C∞(R,R+), equal to 1 for
|x| ≤ 1

4
σ∞ and vanishing for |x| ≥ 1

2
σ∞. We de�ne

g(s) = EN (0,s)φ =

∫
R

1√
2πs

φ(x)e−
x2

2s dx.

Now, we can choose H > 0 such that the function f : Bp,0 → R de�ned by

f(x) = Hg(π0(x))

belongs to R2. Now

d(µ0
t , µ) ≥ |

∫
f dµ0

t −
∫
f dµ| = H|g(σ2

t )− g(σ2
∞)| ;

g is derivable at point σ2 > 0 with

g′(σ2) =

∫
R

1√
2π
φ(x)e−

x2

2σ2 x−
3
2 (−1

2
+ (σ2)−1x2) dx.

Since −1
2
+ (σ2)−1x2 ≤ −1

4
on the support of φ and since φ is positive in the

neighbourhood of zero, it comes that g′(σ2) < 0. Then

|g(σ2
t )− g(σ2

∞)| ∼ |g′(σ2)||σ2
t − σ2

∞| = |g′(σ2)|‖Φt − Φ∞‖1,

which implies (21).
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Remark 6. In this remark, we would to explain that the set of suitable initial
conditions u is relatively large.

1. It is easy to construct nonzero sequences u satisfying to the assumption
inf{Ĵ(z); z ∈ spec u} > 0 : let z1, . . . , zp some points of U such that

∀i ∈ [1, . . . , p] Ĵ(zi) > 0.

Given complex numbers λ1, . . . , λp, the sequence u de�ned by

un = Re (

p∑
i=1

λi(zi)
n) (22)

satis�es
spec u ⊂ {z1, . . . , zp},

which proved the desired assertion.

2. If K is a compact subset of U on which Ĵ does not vanish, every
sequence de�ned like in (22), with zi in K belongs to EJ,τ , where

τ = infz∈K Ĵ(z). If we prove that EJ,τ is closed for the ∗-weak topology
of Bp, it follows that every weak limit of such sequences belongs to EJ,τ
and then satis�es inf{Ĵ(z); z ∈ spec u} > 0.

Lemma 18. EJ,τ is a closed subspace for the ∗-weak topology of Bp.

Démonstration. Let (un)n≥1 be a sequence in EJ,τ which converges to

u ∈ Bp. For each n ≥ 1, supp un ⊂ F = {z ∈ U, Ĵ(z) ≥ τ}. In other
words, ifO′ is the open set U\F , we have for each n ≥ 1,O′ ⊂ ∪O∈Oun

O.
By lemma 14 ∪O∈Oun

O ∈ Oun , but it is easy to see that if O1 and O2

are open sets satisfying O1 ⊂ O2, then O2 ∈ Ou =⇒ O1 ∈ Ou. Then,
O′ ∈ Oun .
Now let f ∈ Ap such that supp f̂ ⊂ O′.
For every n holds ũn(f) = 0, and then passing up to the limit, we get
ũ(f) = 0. Hence O′ ∈ Ou, i.e. supp u ⊂ F , or equivalently u ∈ EJ,τ .
This proves that EJ,τ is closed for the ∗-weak topology of Bp.

2.6 Extension to non-deterministic initial conditions

The previous results are formulated for deterministic initial conditions.
However, it is not di�cult to see that for any initial measure ν such that
ν({x ∈ Bp,0; ΥJ(x) > 0}) = 1, we have always Ttν → µ∞. If we want estimate

the rate of convergence, we must control the speed with which e−t
J
2 ζ vanishes,

since d(µ0
t , µ∞) is controlled independently.
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In case of uniqueness of the Gibbs measure and integrability of ‖ζ‖E,
inequalities

d(P
e−t J2 ζ

, δ0) ≤ E‖e−t
J
2 ζ‖Bp,0 ≤ E‖ζ‖Bp,0‖e−t

J
2 ‖Ap

together with lemma 11 with φ = e0, ensure an exponential rate.
The following result, including the phase transition case, is much �ner.

Theorem 4. Let J be a potential such that Ĵ ∈ C2k(U,C), where k is an
integer satisfying to 2k > p + d

2
. We suppose that ‖ζ‖Bp,0 is integrable and

that there exist positive reals K and β such that

P (ΥJ(ζ) < r) ≤ Krβ.

Now, we have

d(P
e−t J2 ζ

, δ0) = O((
ln t

t
)
β

).

Démonstration. Let f ∈ R2. For x > 0, one has

|Ef(e−t
J
2 ζ)− f(0)| = |E(f(e−t

J
2 ζ)− f(0))11{ΥJ (ζ)<x} + E(f(e−t

J
2 ζ)− f(0))11ΥJ (ζ)≥x)|

≤ 2P (ΥJ(ζ) < x) + E‖e−t
J
2 ζ‖Bp,011{ΥJ (ζ)≥x}

≤ 2Kxζ +K ′
J,k,p(

t

2
)4ke−

tx
2 E‖ζ‖Bp,0

(The last inequality follows from the second part of lemma 16.)
We now choose x = 2(4k + β) ln t

t
: then

|Ef(e−t
J
2 ζ)− f(0)| ≤ 2K(2(4k + β))β(

ln t

t
)β +

K ′
J,k,pE‖ζ‖Bp,0

24k
1

tβ
.

Since this is true for each f ∈ R2, the proof is done.

3 Invariant measures are Gibbsian

The goal of this section is to determinate the set of invariant measures for
the dynamics de�ned in (1), that is, using the notations introduced in (11),
to determinate the measures ν ∈ P(Bp,0) such that for each t ≥ 0, Ttν = ν.

Theorem 5. Let p be positive. We suppose that J is a potential and k an
integer such that 2k > d

2
+ p and Ĵ ∈ C2k(U,C).

Then, for ν ∈ P(Bp,0), the following assertions are equivalent :
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1. ∃µ ∈ P(Bp,0) Ttµ→ ν

2. ∀t ≥ 0, Ttν = ν

3. ∃m ∈ P(Bp,0) m(ker J) = 1 and ν = m ∗ µ∞, where µ∞ is the Gaus-
sian centered measure with spectral density 1

Ĵ
.

4. ν is a Gibbs measure with respect to the potential J .

Démonstration. The implication 1. ⇒ 2.is classic : for any �xed t ≥ 0, the
identity Tt+sµ = TtTsµ holds. By (11), the process is Fellerian and, when s
tends to in�nity, we get Ttν = ν. The converse implication 2.⇒ 1. is obvious.

Let us prove 3. ⇒ 2. First, using 1. ⇒ 2. with µ = δ0, we see that µ∞ is
invariant under the dynamic. Now, if ν ∈ P(Bp,0) satis�es ν = m ∗ µ∞ with
m(ker J) = 1, we obtain

Ttν = exp(− t

2
J)(m ∗ µ∞) ∗ µt

= exp(− t

2
J)m ∗ exp(− t

2
J) ∗ µ∞ ∗ µt

= exp(− t

2
J)m ∗ Ttµ∞

= m ∗ µ∞

= ν

We now prove 2. ⇒ 3. Let µ be another invariant measure. We will
compare µ and µ∞. It's easy to build a probability space (Ω,A, P ) and P -
independent processes X0 and W such that PX0 = µ∞ and W is as before an
in�nite Brownian motion under P . We de�ne

Xt = e−t
J
2X0 +Wt −

J

2

∫ t

0

e−(t−s)J
2Ws ds (23)

Since µ is invariant, we have

∀t ≥ 0 µ = PXt = P
e−

t
2X0

∗ µ0
t (24)

We have (Xt)t≥0 is tight because PXt = µ. (Wt − J
2

∫ t
0
e−(t−s)J

2Ws ds)t≥0 is
also tight because its law under P is µ0

t which converges to µ∞. Since

e−t
J
2X0 = Xt − (Wt −

J

2

∫ t

0

e−(t−s)J
2Ws ds), (25)

it follows that (e−t
J
2X0)t≥0 is tight. Since µ is invariant, we have

∀t ≥ 0 µ = PXt = P
e−

t
2X0

∗ µ0
t
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Every limit point m of (P
e−

t
2X0

)t≥0 is such that µ = m ∗ µ∞ but using the

characteristic functionals, it is easy to see that there this equation has at
most one solution. Since (e−t

J
2X0)t≥0 is tight, it follows that it is convergent.

Then, its limit m satis�es to

∀t ≥ 0 e−
t
2m = m (26)

and
µ = m ∗ µ∞. (27)

It remains to proof that the support of m is included in ker J , or Jm = δ0 :
actually, we will prove that every measure on P(Bp,0) with is invariant under
the �ow (exp(−tJ))t≥0 veri�es Jm = δ0. Remark that such a measure is
invariant under the �ow (exp(tJ))t≥0 too.

In a �rst time, we will only prove that J2km = δ0.
Let x ∈ supp m, ε > 0 and denote by B(x, ε) the ball in Bp,0 with center

x and radius ε. We have µ(B(x, ε)) > 0. Since µ is invariant under exp J ,
Poincaré's lemma ensures that there exists
C ⊂ B(x, ε) with µ(C) = µ(B(x, ε)) > 0 and such that for each y ∈ C, the
sequence (exp(nJ)y)n≥0 returns in�nitely often in A. Since µ(C) > 0, C is
nonempty. Let xε ∈ C : we have

limn→∞‖ exp(nJ)xε − x‖ ≤ ε

and
limn→∞‖ exp(nJ)xε − xε‖ ≤ 2ε.

Lemma 19. For K ∈ Ap such that K̂(U) ⊂ R, let us de�ne

h(K) =
+∞∑
j=1

1

j!
Kj−1. (28)

Then, we have
exp(K) = I +Kh(K),

and h(K) is invertible in the Banach algebra Ap.

Démonstration. The �rst assertion is clear. We have

ĥ(K) =
+∞∑
j=1

1

j!
K̂j−1. (29)

Suppose that there exists z ∈ U such that ĥ(K)(z) = 0 Since

exp K̂ = 1 + K̂ĥ(K), (30)
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we get K̂(z) ⊂ 2iπZ. But K̂ is supposed to take only real values, so K̂(z) = 0.

But, by (29), it follows that ĥ(K)(z) = 1 and we get a contradiction.

So, ĥ(K) does not vanish on U and, by lemma 2, h(K) is invertible.

Since k ≥ 1, we can write for each t > 0 :

J2k =
1

t
J2k−1h(tJ)−1(exp(tJ)− I) (31)

Then

‖J2kxε‖Bp ≤ ‖1
t
J2k−1h(tJ)−1‖Ap ‖(exp(tJ)− I)xε‖Bp (32)

So, if we assume that

M = limt→∞‖1
t
J2k−1h(tJ)−1‖Ap < +∞, (33)

we will have

‖J2kxε‖Bp ≤M limt→∞‖(exp(tJ)− I)xε‖Bp ≤ 2Mε, (34)

and then

‖J2kx‖ ≤ ‖J2k(x− xε)‖Bp + ‖J2kxε‖Bp (35)

≤ ‖J2k‖Ap‖x− xε‖Bp + 2Mε (36)

≤ (2M + ‖J2k‖Ap)ε, (37)

Since ε is arbitrary, J2kx = 0 holds for each x ∈ supp µ, or, in other
words, µ(ker J2k) = 1.
Now, let N ∈ N. We now apply Poincaré's lemma to the set
B(0, N) ∩ ker J2k : there exists CN ⊂ B(0, N) ∩ ker J2k such that
µ(CN) = µ(B(0, N) ∩ ker J2k) and such that for each y ∈ CN , (exp(tJ)y)t≥0

returns in�nitely often in CN . But, since CN ⊂ ker J2k, we have

exp(tJ)y =
2k−1∑
n=0

tn
Jny

n!
. (38)

If n0 = max{n ∈ N; Jny 6= 0}, we have when t tends to in�nity :

exp(tJ)y ∼ tn0
Jn0ny

n0!
(39)
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Since (exp(tJ)y)t≥0 returns in�nitely often in the bounded set CN , we have
necessary n0 = 0. Then, Jy = 0 and CN ⊂ ker J . Now, if we de�ne Ω′ =
∪N∈NCN , we have Ω′ ⊂ ker J and

µ(Ω′) ≥ sup
N∈N

µ(CN) = sup
N∈N

µ(B(0, N) ∩ ker J2k) = sup
N∈N

µ(B(0, N)) = 1 (40)

We now have to prove (33). We need some technical lemmas.

Lemma 20. De�ne a function φ on ]0,+∞[ by

φ(x) =
1

ex − 1
.

Then, for each n ≥ 0, we have the following estimate at in�nity :

φ(n)(x) = O(e−x).

Démonstration. If we de�ne g(x) = x
1−x , then φ(x) = g(e−x). Then, we can

compute φ(n)(x) using the formula of Faa di Bruno :

φ(n)(x) =
∑ n!

q1! . . . qn!
g(

∑
i qi)(e−x)

1

1! . . . n!
e−(

∑
i qi)x (41)

where the summation extends to the non-negative integers such that∑n
i=1 iqi = n. Since g has bounded derivatives in the neighbourhood of 0, the

lemma follows.

Lemma 21. Let j ≥ 1 and Ψj : R → R de�ned by Ψj(x) = xjφ(x). We have
Ψj ∈ C∞(R,R) and

∀n ∈ N sup
x∈R+

|Ψ(n)
j (x)| < +∞.

Démonstration. It's an easy consequence of lemma 20 with help of Leibnitz's
formula.

Now, we can write

̂1

t
J2k−1h(tJ)−1 =

1

t2k
Ψ2k(tĴ)

Then, by lemma 10, there exists K > 0 such that

‖1
t
J2k−1h(tJ)−1‖Ap ≤

K

t2k
‖(1−∆)kΨ2k(tĴ)‖L2(U)
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But

‖(1−∆)kΨ2k(tĴ)‖L2(U) ≤ ‖(1−∆)kΨ2k(tĴ)‖∞
≤ K ′ sup

0≤i≤2k;x∈R
|Ψ(i)

2k(x)| ‖tĴ‖D2k

≤ K ′ sup
0≤i≤2k;x∈R

|Ψ(i)
2k(x)| ‖Ĵ‖D2k(1 + t2k)

So (33) is proved. Since the equivalence between 3. and 4. follows from
(9), the proof of Theorem 5 is now complete.

Theorem 6. Let p be positive. We suppose that J ∈ Ap is a potential and k

an integer such that 2k > d
2
+ p and Ĵ ∈ C2k(U,C). Moreover, we suppose

that Ĵ > 0 on U. Then,

{ν ∈ P(Bp,0);∀t ≥ 0 Ttν = ν} = GJ ∩ P(Bp,0) = {µ∞}.

Démonstration. The �rst equality has been proved in Theorem 5. Obviously,
GJ ∩ P(Bp,0) ⊂ GJ ∩ P(Bp). But by Proposition 2, GJ ∩ P(Bp) = {µ∞}.
Since µ∞ ∈ GJ ∩ P(Bp,0), the result follows.

Example : Let m ≥ 0 and de�ne J by

J(i) =


1 +m if i = 0

− 1
2d

if |i| = 1

0 else

Since Ĵ ∈ C∞(U,R), the regularity assumptions are satis�ed.
For m > 0, J is the so-called harmonic model with mass. By a direct com-
putation, we see that Ĵ > 0 on U. Then, for each p > 0, the assumptions of
Theorem 6 are ful�lled and the unique Gibbs measure with support in Bp,0

is the unique invariant measure for the dynamic with support in Bp,0.
For m = 0, J is the so-called massless harmonic model. By proposition 1,
GJ is non-empty if and only if 1

Ĵ
is integrable, that is if and only if d ≥ 3.

Then, the invariant measures for the dynamic whose support is in Bp,0 are
the associated Gibbs measures with support in Bp,0. Precisely, these are the
measures obtained by convolution of µ∞ by every measure whose support is
included in the set of harmonic sequences which are in Bp,0.

Remark 7. It is interesting to compare Theorem 5 with the �nite dimen-
sional case, which has been studied by Zakai and Snyders [25] : they proved
that the stationary measures associated to d-dimensionnal s.d.e.

Xt = X0 +

∫ t

0

AXs ds+BWt.
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are obtained as convolution of a certain measure µ and an arbitrary invariant
measure for the deterministic dynamic

xt = x0 +

∫ t

0

Axs ds.

This is the way used in the present paper. Of course, an invariant measure for
the deterministic dynamic has not necessary all its support in kerA ; see for

example A =

(
0 1
−1 0

)
and B = I2 : in this case, one can take µ = N (0, I2)

and each radial measure on R2 is invariant under the semi-group because
exp(−tA) is composed by rotations. Such a phenomenon of periodicity can
not happen here, because the spectrum of J , which is a symmetric operator,
is real (it is equal to Ĵ(U), cf [12]). Note that the given example for A is
antisymmetric � and therefore has purely imaginary spectrum. Since it is not
symmetric, it can not be obtained as the gradient of an interaction potential.

Remark 8. Sometimes, a moment condition on the invariant measure is
preferable to a support condition. It can be done easily using the lemma of
Borel-Cantelli. For example, if J ∈ S(Zd) and if one wants to show that a
stationary measure µ is Gibbs, it su�ces to show the existence of an α > 0
such that

sup
i∈Zd

Eµ|Xi|α < +∞.

4 Conclusion

In this paper, we �rst represented the extremal Gibbs measures associated
to a quadratic potential as temporal limits of an in�nite linear system of
stochastic di�erential equations with some deterministic initial conditions.

� Uniqueness of such a Gibbs measure with support in Bp,0 then coin-
cides with the ergodicity of the associated gradient dynamics, in other
words, the absence of phase transition corresponds to the case where
the system converges to a limit which is the same for all initial condi-
tions.

� This way to get Gibbs measures may be seen as complementary to
the classical D.L.R. approach which consists in getting extremal Gibbs
measures as spatial limits of a collection of �nite-dimensional local spec-
i�cations with a �xed sequence of external conditions. Kondratiev and
Sokol have already pointed out this fact in [20].

� In case of phase transition, we do exhibit for each pure phase an a�ne
space of initial conditions as domain of attraction. Indeed, each pure
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phase can be written τsµ∞, with s ∈ ker J , and is limit of the di�usion
starting from u+ s, with ΥJ(u) > 0.

Moreover, we proved that presence or absence of phase transition has an
immediate consequence on the rate of convergence for the dynamics : it is
exponential in case of uniqueness and polynomial in case of phase transition ;
we show that the order d0 of an unique root of Ĵ directly determines the rate
of convergence, which is

1

t
d
d0

−1
.

In the last section, we proved that each invariant measure is a Gibbs state
� and therefore, that every limit of the dynamics too. It is, for the Gaussian
case, an answer for the still open conjecture about existence of invariant non
Gibbsian measures for non-linear in�nite-dimensional gradient systems.
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