240 CHAPITRE 9. FONCTION CARACTERISTIQUE

On peut utiliser le théoreme de Fubini, ce qui nous donne
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De plus, l'application
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est une application continue qui admet comme limite = lorsque y tend vers
l'infini. En particulier, sa norme est bornée par une constante M.

La quantité apparaissant sous l'intégrale est donc bornée par M /x. Lorsque
T tend vers I'infini, elle converge vers la fonction
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Ainsi, Ir(a,b) converge vers [ I,;, du, ce qui donne la convergence vers la
limite annoncée. Si p(a) = p(b) = 0, alors I, ;, est u—presque stirement I'indi-
catrice de |a, b|, ce qui donne [ I,y du = [ 141 dpp = p(]a, b]).

Ainsi, si deux mesures . et v ont la méme fonction caractéristique, on a
w(]a, b)) = v(]a, b]) quels que soient a et b dans

R\{z € R;u({z}) > 0 ou v({z}) > 0}.
Mais ces ensembles forment un 7-systéme qui engendre la tribu, donc les deux

mesures coincident. O

Donnons une conséquence frappante de ce théoreme qui nous sera utile
dans I'étude des vecteurs gaussiens.



