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On peut utiliser le théorème de Fubini, ce qui nous donne
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Or la formule de Moivre et la parité du cosinus donnentZ T
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De plus, l’application

y 7→
Z y

−y

sin t

t
dt

est une application continue qui admet comme limite π lorsque y tend vers
l’infini. En particulier, sa norme est bornée par une constante M .

La quantité apparaissant sous l’intégrale est donc bornée parM/π. Lorsque
T tend vers l’infini, elle converge vers la fonction
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Ainsi, IT (a, b) converge vers
R
Ia,b dµ, ce qui donne la convergence vers la

limite annoncée. Si µ(a) = µ(b) = 0, alors Ia,b est µ−presque sûrement l’indi-
catrice de ]a, b[, ce qui donne
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Ainsi, si deux mesures µ et ν ont la même fonction caractéristique, on a
µ(]a, b[) = ν(]a, b[) quels que soient a et b dans

R\{x ∈ R;µ({x}) > 0 ou ν({x}) > 0}.

Mais ces ensembles forment un π-système qui engendre la tribu, donc les deux
mesures coïncident.

Donnons une conséquence frappante de ce théorème qui nous sera utile
dans l’étude des vecteurs gaussiens.


