4. On pose $Z_n = Y_{n \wedge \tau}$. Montrer que $(Z_n)_{n \geq 0}$ est une martingale, puis, à l'aide du théorème de convergence dominée, montrer que

$$\mathbb{P}^x(\tau_a < \tau_b) = \mathbb{P}^x(Y_\tau = \frac{1}{1+a}) = \frac{\frac{1}{b+1} - \frac{1}{x+1}}{\frac{1}{b+1} - \frac{1}{a+1}}.$$

- 5. Montrer que $\lim_{n\to +\infty} \tau_n = +\infty$ \mathbb{P}^x presque sûrement.
- 6. En déduire que $\mathbb{P}^x(\tau_a < +\infty) = \frac{a+1}{x+1}$.
- 7. On pose

$$I = \inf\{X_n; n \ge 0\}.$$

Montrer que sous \mathbb{P}^x , I suit la loi uniforme sur $\{0,\ldots,x\}$.

Exercice 71. Une marche aléatoire sur le groupe affine $Aff(\mathbb{F}_5)$. ⁹ Le groupe des affinités sur \mathbb{F}_5 est formé des bijections de \mathbb{F}_5 dans luimême qui s'écrivent f(z) = az + b, avec $(a,b) \in \mathbb{F}_5^{\times} \times \mathbb{F}_5$. C'est un sous-groupe de $\mathfrak{S}(\mathbb{F}_5)$. On définit une suite d'affinités aléatoires par $r_0 = \mathrm{Id}(\mathbb{F}_5)$, puis $r_{n+1} = f_{n+1} \circ r_n$, où $(f_n)_{n \geq 1}$ est une suite d'affinités aléatoires indépendantes de même loi, avec

$$\mathbb{P}(f_1 = g) = \mathbb{P}(f_1 = h) = \frac{1}{2}, \text{avec } g(z) = 2z \text{ et } h(z) = 3z + 1.$$

- 1. Montrer que $(r_n)_{n\geq 0}$ est une chaîne de Markov. Est-elle irréductible, apériodique?
- 2. On cherche à calculer $\mathbb{P}(r_{2n} = \text{Id})$ par une méthode matricielle.
 - (a) On ordonne les états dans l'ordre

^{9.} Pour d'autres résultats sur les marches aléatoires sur les groupes affines $\mathrm{Aff}(\mathbb{F}_p)$, on pourra se rapporter à l'ouvrage de Diaconis [13], exemple 4 page 34. Cet ouvrage est librement téléchargeable à l'adresse https://projecteuclid.org/euclid.lnms/1215467407

Vérifier que la matrice de la chaîne (r_n) est

$$M = \frac{1}{2} \left[\begin{array}{cccc} 0 & A & B & 0 \\ B & 0 & 0 & A \\ A & 0 & 0 & B \\ 0 & B & A & 0 \end{array} \right],$$

avec

$$A = \left[\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right] \text{ et } B = \left[\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right].$$

L'usage d'un outil numérique de calcul peut simplifier le travail.

(b) Montrer que (r_{2n}) est une chaîne de Markov. La représenter à l'aide de la matrice

$$N' = \left[\begin{array}{cc} A' & B' \\ B' & A' \end{array} \right],$$

où
$$A' = AB + BA$$
 et $B' = A^2 + B^2$.

(c) On admet que $N'^2+N'=2J_{10}$, où J_{10} est la matrice 10×10 dont toutes les entrées sont égales à 1. Montrer qu'il existe une suite $(\lambda_n)_{n\geq 1}$ telle que pour tout $n\geq 1$,

$$N'^n = \lambda_n J_{10} - (-1)^n N'.$$

- (d) En déduire la valeur de $\mathbb{P}(r_{2n} = \mathrm{Id})$
- 3. On cherche toujours à calculer $\mathbb{P}(r_{2n}=\mathrm{Id})$, mais cette fois, on va utiliser des outils d'algèbre plus sophistiqués. On note G le sousgroupe de $\mathfrak{S}(\mathbb{F}_5)$ engendré par $t:z\mapsto z+1$ et $s:z\mapsto -z$. G est le groupe diédral d'ordre 10. On admet les résultats d'algèbre suivants que l'on ne demande pas de redémontrer 10 :

$$\forall g \in G \quad \delta_{Id}(g) = \frac{1}{|G|} \sum_{\rho \in Irr(G)} \dim(\rho) Tr \, \rho(g), \tag{6.15}$$

^{10.} Voir par exemple [32], corollaire 4.6 p 211 pour la formule (6.15) et la section 1.3 page 227 pour les résultats sur les groupes diédraux.