ANALYSE NUMÉRIQUE

INTRODUCTION

Le problème traite de l'approximation d'une fonction analytique au voisinage de zéro, par des fractions rationnelles $\frac{P}{Q}$. La première partie présente les moyens classiques d'étude du problème. Dans les deuxième et troisième parties, on s'intéresse aux pôles de ces approximants, soit que l'on veuille connaître leur comportement quand on optimise l'ordre d'approximation, soit qu'on veuille étudier le comportement des approximants, quand l'ordre d'approximation est plus faible, mais les pôles fixés.

Dans la quatrième partie, on étudie les approximants de l'exponentielle, où des résultats explicites sont obtenus; enfin dans la dernière partie, la vitesse de convergence des approximants est comparée à celle des sommes partielles de la série, dans le cas d'une série de Stieltjes.

Les parties II, III, IV, V sont, dans une large mesure, indépendantes entre elles.

NOTATIONS

Une fraction rationnelle $\frac{P}{Q}$ est dite de type (p,q) si les degrés de P et Q vérifient : $d^0 P \leq p$ et $d^0 Q \leq q$.

Une fraction rationnelle $\frac{P}{Q}$ de type (p,q) est un approximant de type-Padé de f au voisinage de zéro (A.T.P.)

si:
$$\left(f-\frac{P}{Q}\right)(z) = 0 (z^{p+1}).$$

On écrira $\left(\frac{P}{Q}\right) = (p/q)_f$.

Une fraction rationnelle $\frac{P}{Q}$ de type (p,q) est un approximant de Padé de f au voisinage de zéro si :

$$\left(f-\frac{P}{Q}\right)(z)=0\;(z^{p+q+1})\;.$$

On écrira $\frac{\mathbf{P}}{\mathbf{Q}} = [p/q]_f$.

Si P_n est un polynôme de degré n exactement, on définit \tilde{P}_n par :

$$\widetilde{\mathbf{P}}_{n}(t)^{*} = t^{n} \mathbf{P}_{n}(t^{-1}).$$

Un polynôme est dit unitaire si le coefficient du terme de plus haut degré est un. La notation D_r désigne le disque ouvert, de centre O, de rayon r.

PREMIÈRE PARTIE

On considère une fonction f holomorphe dans un voisinage de zéro, développable à l'origine en série entière de rayon R:

$$f(x) = \sum_{i \geq 0} c_i x^i$$

Q.1. Soit Ω un domaine de \mathbb{C} , dont le bord $\partial \Omega$ est C^1 différentiable par morceaux. Soit $(x_i)_{i=1...m}$, m points distincts de Ω , $(m_i)_{i=1...m}$, m entiers $(m_i \ge 1)$, et h une fonction holomorphe dans un voisinage de $\overline{\Omega}$. Pour t dans Ω , on pose:

$$n = \sum_{i=1}^{m} m_i;$$
 $V_n(t) = \prod_{i=1}^{m} (t - x_i)^{m_i};$

$$P(t) = \frac{1}{2i\pi} \int_{\partial\Omega} \frac{V_n(t) - V_n(u)}{t - u} \frac{h(u)}{V_n(u)} du.$$

Montrer que P est un polynôme de degré au plus n-1.

Montrer que les dérivées successives de $\frac{V_n(t)}{(t-u)}$, par rapport à t, sont nulles en $t=x_i$ jusqu'à l'ordre m_i-1 .

Montrer que P interpole, au sens d'Hermite, h en x_i à l'ordre m_i , pour i = 1, ..., m (c'est-à-dire $P^{(j)}(x_i) = h^{(j)}(x_i)$ pour i = 1, ..., m et $j = 0, ..., m_i - 1$).

Dans le cas où $m_i = 1$ pour tout i, calculer explicitement l'intégrale ci-dessus et montrer que l'on retrouve ainsi le polynôme d'interpolation de Lagrange.

Q.2. Pour tout α strictement inférieur à R, on note \mathcal{H}_{α} l'espace des fonctions holomorphes dans le disque de rayon $\frac{1}{\alpha}$. On définit sur \mathcal{H}_{α} la fonctionnelle linéaire c associée à f par :

$$c(g) = \frac{1}{2 i \pi} \int_{|t| = r}^{r} f(t) \cdot g\left(\frac{1}{t}\right) \cdot \frac{dt}{t}.$$

Montrer que c est indépendant de r pourvu que $\alpha < r < R$.

Montrer que pour tout $i \ge 0$, $c(t^i) = c_i$.

Soit $g_x(t) = \frac{1}{1 - xt}$. Montrer que $c(g_x) = f(x)$ pour tout x tel que |x| < R.

Le premier membre $c(g_x)$ sera écrit dans toute la suite, soit pour désigner la série $\sum_{i>0} c_i x^i$, soit un prolongement analytique de celle-ci.

Q.3. P_x désigne le polynôme, défini en Q.1., pour la fonction
$$h=g_x$$
. Soit W_n le polynôme associé à V_n , défini en Q.1., pour la fonction $h=g_x$.

$$W_n(x) = c\left(\frac{V_n(x) - V_n(t)}{x - t}\right), \quad (c \text{ agissant sur } t).$$

On suppose que $f(0) \neq 0$. Montrer que W_n est un polynôme de degré n-1.

Montrer que :
$$c(P_x) = \frac{\tilde{W}_n(x)}{\tilde{V}_n(x)}$$

$$f(x) - c(P_x) = \frac{x^n}{\tilde{V}_n(x)} c\left(\frac{V_n(t)}{1 - xt}\right);$$

$$f(x) - c(P_x) = 0(x^n)$$
 pour x voisin de zéro.

En déduire que
$$\frac{\tilde{W}_n}{\tilde{V}_n} = (n - 1/n)_f$$
.

Q.4. On suppose que
$$f(x) = x^k f_1(x)$$
 et $f_1(0) \neq 0$.

Soit
$$\frac{N}{D}$$
 un A.T.P. de f_1 de type (p, q) .

Montrer que
$$x^{k} \frac{\mathrm{N}\;(x)}{\mathrm{D}\;(x)}$$
 est un A.T.P. de f de type $(p\;+\;k\;,\;q)$.

Q.5. Un polynôme D, tel que D(0)
$$\neq$$
 0, de degré q, étant fixé, montrer que l'A.T.P. de dénominateur D, de type (p, q) existe et est unique quel que soit p .

Donner l'expression des coefficients du numérateur en fonction des coefficients de D et de ceux de la série f.

Q.6. On pose
$$f_k(x) = \sum_{i > 0} c_{i+k} x^i$$
 $\begin{cases} k \in \mathbb{Z} \\ c_i = 0 \end{cases}$ $i < 0$.

Soit c^k la fonctionnelle associée à f_k .

 V_n étant un polynôme arbitraire de degré n exactement, on appelle $(n-1/n)_{f_k}$ l'A.T.P. de f_k de dénominateur \tilde{V}_n .

Soit
$$\frac{N_{n+k-1}}{\tilde{V}_n}(x) = \sum_{i=0}^{k-1} c_i x^i + x^k (n-1/n)_{f_k}(x)$$
.

Montrer que
$$\frac{N_{n+k-1}}{\widetilde{V}_n} = (n+k-1/n)_f$$

$$\left(f-\frac{N_{n+k-1}}{\widetilde{V}_n}\right)(x)=\frac{x^{n+k}}{\widetilde{V}_n(x)}c^k\left(\frac{V_n(t)}{1-xt}\right).$$

Q.7. À quelle condition existe-t-il un unique polynôme unitaire
$$V_n$$
 de la variable x tel que :

$$\frac{N_{n+k-1}}{\tilde{V}_n} = [n+k-1/n]_f.$$

Écrire ce polynôme V_n , sous forme d'un rapport de deux déterminants, la dernière ligne du numérateur étant : $(1, x, ..., x^n)$.

fini

DEUXIÈME PARTIE

Soit f une fonction méromorphe dans le disque D_{ρ} , de rayon ρ non nul, dont les pôles $\alpha_1, \ldots, \alpha_{\nu}$ sont simples et non nuls.

On définit une suite de polynômes Q_k , pour k = 0, ..., y:

$$Q_{0}(z) = 1$$

$$Q_{k}(z) = \prod_{i=1}^{k} (z - \alpha_{i}).$$

Pour $n \ge 0$, soit $(a_k^n)_{k=1,\ldots,\nu}$ une suite arbitraire de nombres complexes.

On pose:

$$q_n(z) = \sum_{k=1}^{\nu} a_k^n Q_{k-1}(z) + Q_{\nu}(z).$$

- Q.8. Écrire, sous forme intégrale sur un contour Γ à préciser, l'expression de Π_n , unique polynôme de degré inférieur ou égal à $n+\nu$, qui interpole $(q_n\cdot Q_\nu\cdot f)$ en 0 à l'ordre $n+\nu+1$.
- Q.9. Pour tout n, montrer que Π_n est divisible par Q_v si et seulement si $(a_k^n)_{k=1,\ldots,\nu}$ vérifient un système linéaire :

$$\sum_{k=1}^{\nu} a_k^n c_{jk}^n = d_j^n \qquad j = 1, \ldots, \nu.$$

Préciser les c_{jk}^n (qui sont définis par des intégrales).

Étudier $\lim_{n\to\infty} c_{jk}^n$, et le système linéaire limite quand $n\longrightarrow\infty$.

En déduire que, pour n assez grand, il existe $(a_k^n)_{k=1,\ldots,\nu}$ uniques tels que Π_n soit divisible par Q_{ν} . Dans la suite de cette partie, les $(a_k^n)_{k=1,\ldots,\nu}$ sont ceux ainsi définis, n étant supposé assez grand.

Q.10. Montrer que $\lim_{k \to 0} a_k^n = 0$, $k = 1, \ldots, \nu$.

Montrer que, uniformément sur tout ensemble borné du plan :

$$\lim_{n\to\infty}q_n(z)=Q_{\nu}(z).$$

Q.11. Soit $R_n = \frac{\Pi_n}{q_n \cdot Q_v}$

Montrer que R_n est l'approximant de Padé $[n/v]_f$ de f.

Q.12. Soit λ et σ vérifiant $\lambda < \sigma < \rho$ et tous les α_i , $i = 1, \ldots, \nu$, appartiennent à D_{λ} .

Soit K un compact contenu dans $D_{\lambda} - \{\alpha_i\}_{i=1,\ldots,\nu}$.

$$\text{Montrer que } \lim_{n \to \infty} \left(\sup_{z \in K} |f(z) - R_n(z)|^{\frac{1}{n}} \right) < \frac{\lambda}{\sigma} < 1.$$

En déduire que R_n converge vers f uniformément et géométriquement sur tout compact de $D_\rho - \{\alpha_1, \ldots, \alpha_v\}$ quand n tend vers l'infini.

Q.13. Montrer que R_n est une fraction irréductible, et a effectivement ν pôles qui approchent les ν pôles de f quand n tend vers l'infini.

TROISIÈME PARTIE

On suppose dans cette partie que f est une fonction méromorphe sur \mathbb{C} , de pôles $\alpha_1, \ldots, \alpha_m$, distincts, en nombre fini ou non, non nuls, simples.

Les α_i sont supposés rangés en ordre de module croissant, on pose $u_i = \alpha_i^{-1}$, et on suppose de plus qu'il existe ν et σ tels que :

$$|\alpha_{\mathbf{v}}| < \sigma < |\alpha_{\mathbf{v}+1}|$$
.

Q.14. Montrer que f peut se mettre sous la forme

$$f(z) = \sum_{i=1}^{V} \frac{r_i}{z - \alpha_i} + g(z)$$

où g est une fonction holomorphe dans le disque D_g .

Si
$$f(z) = \sum_{n>0} c_n z^n$$
 et $g(z) = \sum_{n>0} b_n z^n$, exprimer c_n en fonction des r_i , u_i , b_n .

Q.15. Soit $\tilde{\mathbf{V}}_n$ le polynôme égal au déterminant suivant :

$$\sum_{i=1}^{\nu} r_{i} u_{i}^{n+1}, \dots, \sum_{i=1}^{\nu} r_{i} u_{i}^{n+\nu+1}$$

$$\sum_{i=1}^{\nu} r_{i} u_{i}^{n+\nu}, \dots, \sum_{i=1}^{\nu} r_{i} u_{i}^{n+2\nu}$$

$$1, \dots, \dots, \dots$$

Calculer
$$\tilde{\mathbf{V}}_n$$
, comparer à $\tilde{\mathbf{V}}(z) = \mathbf{V}_{t}(z - u_t)$.

Comparer les A.T.P. de f, de dénominateurs respectivement V_n et V.

Q.16. Soit H_v^n le polynôme suivant :

$$H_{v}^{n}(z) = \begin{bmatrix} c_{n} & \cdots & c_{n+v} \\ \vdots & & \ddots \\ \vdots & & \ddots \\ c_{n+v-1} & \cdots & c_{n+2v-1} \\ 1 & \cdots & z^{v} \end{bmatrix}$$

(Sous les hypothèses faites sur f, ce polynôme est effectivement de degré v, pour n assez grand, ce que l'on admettra sans démonstration.)

On pose $D_{nv} = H_n^v - \tilde{V}_n$.

Montrer que pour tout ρ , vérifiant $|u_v|>
ho>|u_{v+1}|$, et uniformément par rapport à z dans tout compact contenu dans D_{σ} :

$$D_{nv} = 0 \left(\left| u_1 \ldots u_{v-1} \rho \right|^n \right) \quad n \longrightarrow + \infty.$$

En déduire que, quand n tend vers l'infini, il existe K_v indépendant de n tel que :

$$H_v^n(z) = K_v(u_1 \ldots u_v)^n \left[\prod_{i=1}^v (z-u_i) + 0 \left(\left(\frac{z}{|u_v|} \right)^n \right)^n \right]$$

Q.17. Montrer que si g est un polynôme de degré h:

$$(n+\nu/\nu)_f=[n+\nu/\nu]_f \qquad n\geqslant h.$$

où l'A.T.P. considéré est de dénominateur V.

Q.18. On définit les notations suivantes :

'il

$$(n + v - 1/v)_f = \frac{W_n}{V_n}$$
 $(V_n f - W_n)(z) = \sum_{p>0} \beta_p z^p;$

$$[n+\nu-1/\nu]_f=\frac{\mathrm{P}_n}{\widetilde{\mathrm{H}}_v^n}\qquad \left(\widetilde{\mathrm{H}}_v^n\,f-\mathrm{P}_n\right)=\sum_{n\geq 0}a_n\,z^p\,.$$

Montrer que, quand n tend vers l'infini

$$\beta_p = a_p = 0 \qquad \qquad p \leqslant n + \nu - 1$$

$$\beta_p = 0 \left(\rho^{(v-1)n} \right) \qquad n + v \leq p \leq n + 2 v - 1;$$
 $\beta_p - a_p = 0 \left(\rho^{(v-1)n} \right) \qquad p \geq n + 2 v.$

$$\beta_p - a_p = 0 \ (\rho^{(v-1)n}) \qquad p \geqslant n+2 \ v$$

Q.19. On suppose que les pôles α_i ne sont pas connus exactement, mais qu'on connaît pour chaque i, $i=1,\ldots,\nu$, une suite $(y_{ik})_{k \ge 0}$: $\lim_{k \to \infty} y_{ik} = \alpha_i$.

$$Q_k(z) = \prod_{i=1}^{n} (z - y_{ik})$$
 et on pose :

$$\sum_{p>0} \beta_p^k z^p = \widetilde{Q}_k (z) . f(z).$$

Soient x_i , $i = 1, \ldots, \nu$ les racines de H_{ν}^n , et $\mu_k = \sup_{i=1}^{n} |x_i - y_{ik}|$.

 $\beta_p^k = a_p + 0 (\mu_k) \quad (k \longrightarrow + \infty).$ Montrer que

QUATRIÈME PARTIE

Q.20. Soit R (t) un polynôme de degré m et $\mathcal{F}(t)$ la fonction suivante

$$\mathcal{F}(t) = \frac{R(t)}{z} + \frac{R'(t)}{z^2} + \ldots + \frac{R^{(m)}(t)}{z^m}.$$

Montrer que
$$\int_{t_0}^{t_1} e^{-zu} R(u) du = -\left[e^{-tz} \mathcal{F}(t)\right]_{t_0}^{t_1}.$$

Soient $\Phi_0(z) = z^{m+1} \mathcal{F}(0)$ et $\Phi_1(z) = z^{m+1} \mathcal{F}(1)$, montrer que :

$$\Phi_0(z) \cdot e^z - \Phi_1(z) = z^{m+1} e^z \int_0^1 e^{-uz} R(u) du.$$

O.21. Calculer R pour que

$$d^0 \Phi_0 = q$$
, $d^0 \Phi_1 = p$
$$\frac{\Phi_0}{\Phi_1} = [p/q]_{\rm exp} \qquad \text{(approximant de Padé de } e^z = \exp(z)).$$

Dans les questions 22, 23, 24, on suppose que $q \geqslant p$.

Q.22. Soit $\frac{P}{O}$ une fraction de type (p, q) vérifiant $Q(0) \neq 0$.

Montrer que $\frac{P}{O}$ est un A.T.P. de l'exponentielle si, et seulement si, il existe un polynôme R unique, d degré q tel que :

$$P(z) = \sum_{k=0}^{p} R^{(q-k)}(1) \cdot z^{k};$$

$$Q(z) = \sum_{k=0}^{q} R^{(q-k)}(0) \cdot z^{k}.$$

R est appelé le C-polynôme de l'approximant.

Q.23. Montrer que si $\frac{P}{Q}$, de type (p, q), vérifie :

$$e^{z}.Q(z) - P(z) = 0(z^{s+1})$$
 $s \ge p$

alors le C-polynôme R vérifie :

a.
$$p \le s \le q$$
 $R^{(q-s)}(x) = (x-1)^{s-p} \hat{R}_p(x)$ $d^o \hat{R}_p = p$

b.
$$s \ge q$$
 $\mathbf{R}(x) = \frac{d^{s-q}}{dx^{s-q}} \left[x^{s-q} (x-1)^{s-p} \widehat{\mathbf{R}}_{p+q-s}(x) \right]$ $d^{\circ} \widehat{\mathbf{R}}_{p+q-s} = p+q-s$

Pour cette dernière démonstration, on pourra considérer la suite I, :

$$I_{0}(x) = R(x)$$
 $I_{r+1}(x) = \int_{0}^{x} I_{r}(u) du$

et calculer I_r , I_r (0), I_r (1).

Q.24. Soit P_n un polynôme de degré n, z un paramètre et τ une constante. On considère l'équation différentielle E_n :

$$-y'(x) + y(x) = \tau P_n\left(\frac{x}{z}\right).$$

On appelle y_n (x,z) la solution polynôme de E_n et on calcule τ telle que y_n (0,z)=1 .

Calculer y_n (x,z) en fonction des coefficients de P_n , et des sommes partielles S_i de l'exponentielle.

Montrer que y_n (z, z) est un approximant de type Padé (n/n) de l'exponentielle. Précisez le C-polynôme de cet approximant.

Déterminer P_n unitaire tel que y_n (z, z) soit l'approximant de Padé [n/n] de l'exponentielle.

Q.25. Montrer que si $S_n(z)$ est la somme partielle de degré n de exp(z) et $U_n(z)$ la somme partielle de exp (-z), $\frac{1}{S_{-}}$ et U_n sont deux A.T.P. de exp (-z).

Déterminer les C-polynômes associés respectivement à ces approximants.

 $g_n(x) = \frac{1}{S_n(x)} - e^{-x} \quad x \in [0, \infty[.$ Q.26. On pose

Montrer que g_n admet un maximum en un point ξ de]0, ∞ [.

Montrer que $g_n(\xi) \leq \frac{1}{2} g_{n-1}(\xi)$.

En déduire que $\sup_{x \in [0, \infty[} \left| \frac{1}{S_n(x)} - e^{-x} \right| < \frac{1}{2^n}$.

CINQUIÈME PARTIE

Dans cette partie f est une fonction analytique dans $\mathbb{C}-[1,\infty[$, définie par une série de Stieltjes :

$$f(x) = \sum_{i \geq 0} c_i x^i \qquad c_i = \int_0^1 u^i w(u) du$$

où w est une fonction positive intégrable, telle que $\lim_{n\to\infty} |c_n|^{\frac{1}{n}}$ existe et vaut 1.

Q.27. Montrer que si c est la fonctionnelle définie en Q.2. :

$$x \in \mathbb{C} - [1, \infty[$$
 $f(x) = c\left(\frac{1}{1-xt}\right) = \int_0^1 \frac{w(u)}{1-xu} du.$

En déduire que pour tout polynôme V_k , et pour tout x de $\mathbb C$ — [1, ∞ [

$$c\left(\frac{V_k(t)}{1-xt}\right)=\int_0^1\frac{V_k(u)}{1-xu}w(u)du.$$

Q.28. Pour $n \in \mathbb{N}$, et pour toute détermination de la racine carrée, on pose

$$T_n(z) = \frac{1}{2} \left[(z + \sqrt{z^2 - 1})^n + (z - \sqrt{z^2 - 1})^n \right].$$

 $\forall \theta \in \mathbb{R}, T_n(\cos \theta) = \cos n \theta.$

Quelles sont les racines de T_n ?

Q.29. Soit $T_n^*(x) = T_n(2 x - 1)$.

On considère le polynôme P_n , de degré n-1, interpolant la fonction $t \mapsto \frac{1}{1-\kappa t}$ aux racines de

 T_n^* . Montrer qu'alors, on a, pour $x \in \mathbb{C} - [1, \infty[:|f(x) - c(P_n)|] \leq M \frac{\rho^n}{1 - \rho^{2n}} k$

avec
$$\begin{cases} M \text{ constante} \\ k = k \ (x) = \sup_{u \in [0, 1]} \left| \frac{1}{1 - xu} \right| \\ \rho = \rho \ (x) = \inf \left[\left| A + \sqrt{A^2 - 1} \right|, \left| A - \sqrt{A^2 - 1} \right| \right], \quad A = 2 \ x^{-1} - 1. \end{cases}$$
Montrer que $\rho < 1$.

Montrer que $\rho < 1$.

En déduire que c (P_n) converge vers f, quand n tend vers l'infini, pour tout x de \mathbb{C} – [1, ∞ [.

Q.30. Soient S_n les sommes partielles de f, de degré n. Montrer que

$$x \in [0, 1[$$
 $\lim_{n \to \infty} |f(x) - S_n(x)|^{\frac{1}{n}} = |x|.$

Étendre ce résultat à tout x complexe de \mathbb{C} – [1, ∞ [.

Q.31. Soit $\varphi(x) = A - \sqrt{A^2 - 1}$ et $A = 2x^{-1} - 1$, la détermination de la racine étant telle que $\sqrt{1 - x} \ge 0$ si $x \in [0, 1]$.

Montrer que $\varphi(x) = x^{-1} \left(1 - \sqrt{1-x}\right)^2$; en déduire que pour tout x de D_1 , $\rho(x) < |x|$. En déduire que dans le disque unité, $c(P_n)$ converge vers f plus vite que S_n , c'est-à-dire que

$$\lim_{n\to\infty} \left| \frac{c(P_n)(x) - f(x)}{S_n(x) - f(x)} \right| = 0.$$