Concours Général 1989

EXERCICE I

On se donne une partie B du plan et l'on considère les parties A du plan contenant B et possédant la propriété (P):

« Toute composée d'un nombre impaire de symétries centrales de centres appartenant à A est une symétrie centrale dont le centre appartient aussi à A. »

Plus précisément, on se propose de déterminer la plus petite de ces parties, que l'on notera (A), c'est-à-dire celle qui est contenue dans chacune des parties A.

- 1. Déterminer la partie (A) lorsque la partie B donnée est formée :
 - (a) De deux points distincts I et J.
 - (b) De trois points non alignés I, J et K.
- Déterminer la partie (A) lorsque la partie B est un cercle de rayon non nul.
- 3. Donner plusieurs exemples de parties B telles que les parties (A) associées soient distinctes entre elles et différentes des précédentes.

EXERCICE II

- 1. Soit z_1 et z_2 deux nombres complexes tels que $z_1z_2 = 1$ et $|z_1 z_2| = 2$. On désigne par A, B, M_1 et M_2 les points d'affixes respectives $-1, 1, z_1$ et z_2
- 2. Montrer que le quadrilatère AM_1BM_2 est en général un trapèze isocèle dont on calculera la longueur des côtés non parallèles. Préciser les cas particuliers.
- 3. Soient O_1 et O_2 deux points distincts du plan et (C_1) , (C_2) les cercles de centre O_1,O_2 et de rayon $d\sqrt{2}$ où $2d=O_1O_2$
 - Deux points mobiles P et Q se déplacent respectivement sur les cercles (C_1) et (C_2) de façon que :
 - -PQ=2d
 - les points P et Q sont soit sur la droite (O_1O_2) soit de part et d'autre de (O_1O_2) .

Démontrer que le milieu I du segment [PQ] décrit une ligne de niveau de l'application $f: M \mapsto MO_1.MO_2$ lorsque P décrit le cercle (C_1) .

EXERCICE III

Déterminer le plus grand nombre réel k tel que, pour tout tétraèdre ABCD de volume V, le produit des aires des faces ABC, ABD et ACD soit supérieur ou égal à kV^2 .

EXERCICE IV

n désigne un nombre entier supérieur ou égal à 2.

Soient x_1, x_2, \ldots, x_n n nombres entiers naturels non nuls. Pour k, nombre entier compris au sens large entre 2 et n, on définit le nombre entier $[x_k; x_{k-1}; \ldots; x_1]$ par récurrence sur k en posant :

$$\begin{array}{rcl} [x_2;x_1] & = & x_2^{x_1} \\ \text{si } k \geq 3, & [x_k;x_{k-1};...;x_1] & = & x_k^{[x_{k-1};x_{k-2};...;x_1]}. \end{array}$$

Par exemple, $[a; b; c] = a^{(b^c)}$.

Les deux questions sont indépendantes.

Question 1

Soient a_1, a_2, \ldots, a_n n nombres entiers distincts rangés dans l'ordre croissant et supérieurs ou égaux à 3, c'est-à-dire $3 \le a_1 < a_2 < \cdots < a_n$. Pour s permutation de l'ensemble $1, 2, \ldots, n$, on pose : $P(s) = [a_{s(n)}; a_{s(n-1)}; \ldots; a_{s(2)}; a_{s(1)}]$.

Pour quelle permutation s, P(s) est-il minimum?

Pour quelle permutation s, P(s) est-il maximum?

On étudiera d'abord le cas de n=2 puis celui de n=3.

Question 2

Déterminer les nombres entiers a, b, c, d supérieurs ou égaux à 2 tels que :

$$[178; 9] \le [a; b; c; d] \le [198; 9].$$

EXERCICE V

Soient $a_1, a_2, ..., a_n$ n nombres réels strictement positifs. On pose :

$$s = \sum_{k=1}^{n} a_k$$
 et $s' = \sum_{k=1}^{n} a_k^{1-1/k}$.

1. Soit λ un nombre réel strictement supérieur à 1. Établir l'inégalité :

$$s' < \lambda s + \frac{\lambda}{\lambda - 1}.$$

2. En déduire l'inégalité : $\sqrt{s'} < \sqrt{s} + 1$.