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1. E[Yn|Fn−1] = E[Xn|Fn−1]−E[Xn−1|Fn−1]. Comme (Xn)n≥1 est une mar-
tingale, E[Xn|Fn−1] = Xn−1, et d’autre part Xn−1 est Fn−1-mesurable,
donc E[Xn−1|Fn−1] = Xn−1, ce qui donne finalement E[Yn|Fn−1] = E[Xn|Fn−1]−
E[Xn−1|Fn−1] = 0.

2. On a
{νt ≤ n} = {sn ≥ t}.

Or sn =
∑n

k=1 σ2
k: pour tout k σ2

k = E[Y 2
k |Fk−1 est Fk−1 mesurable. Mais

la suite des tribus (Fk) est croissante, donc pour tout k ∈ {1, . . . , n}, σ2
k

est Fn−1 mesurable. Finalement la somme sn est Fn−1 mesurable, ce qui
montre que {νt ≤ n} = {sn ≥ t} ∈ Fn−1.

De plus νt est presque sûrement fini, car l’hypothèse P(sn → +∞) = 1
implique qu’il existe presque sûrement un entier sn tel que sn ≥ t.

3. (a) Si νt 6= k ou σk = 0, l’inégalité est évidente. Si νt = k, celà signifie
que sk ≥ t et que sk−1 < t. La deuxième inégalité implique que
ε(k, t) est bien défini et est (strictement) positif. Ensuite on a sk =
sk−1 + σ2

k ≥ t, d’où t− sk−1 ≤ σ2
k et finalement ε(k, t) ≤ 1.

(b) On peut réécrire

ε(k, t) = 11{νt>k} + 11{νt=k}

√
t− sk−1

σ2
k

Comme νt est un (Fn−1)n≥1 temps d’arrêt, les événements {νt >
k} et {νt = k} sont Fk−1-mesurables. D’autre part, la variable
aléatoire 11{σk>0}

√
t−sk−1

σ2
k

est mesurable par rapport à la tribu en-
gendrée par σ1, σ2, . . . , σk. Mais toutes ces variables aléatoires sont
Fk−1-mesurables, donc finalement ε(k, t) est Fk−1-mesurable.
On a donc

E[Zt
k|Fk−1] = E[ε(k, t)Yk|Fk−1] = ε(k, t)E[Yk|Fk−1] = ε(k, t).0 = 0.
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(c) Zt
k = ε(k, t)Yk. A la question précédente, on a montré que ε(k, t)

est Fk−1-mesurable: a fortiori, il est donc Fk-mesurable. Comme
Yk est la différence d’une variable Fk-mesurable et d’une variable
Fk−1-mesurable (et donc Fk-mesurable), elle est Fk-mesurable. Fi-
nalement Zt

k est Fk-mesurable pour tout k ≥ 1, ce qui montre bien
que le processus (Zt

k)k≥0 est (Fk)k≥0-adapté.

4. (a) On a
τ2
k,t = E[(Zt

k)2|Fk−1] = E[ε(k, t)2Y 2
k |Fk−1].

Mais ε(k, t) est Fk−1-mesurable, donc ε(k, t)2 aussi et donc

Eε(k, t)2Y 2
k |Fk−1] = ε(k, t)2EY 2

k |Fk−1] = ε(k, t)2σ2
k.

(b) On a Zt
k = ε(k, t)Yk. Comme |ε(k, t)| ≤ 1, on a donc |Zt

k| ≤ |Yk| ≤ K,
ce qui entrâıne (Zt

k)2 ≤ K2, d’où τk,t = (E[(Zt
k)2|Fk−1])1/2 ≤ K.

Ainsi, on a |Zt
k| ≤ K et 0 ≤ τk,t ≤ K, ce qui entrâıne évidemment

|Zt
k|3 ≤ K(Zt

k)2 et τ3
k,t ≤ Kτ2

k,t.

(c) Soit t > 0.

+∞∑

k=1

τ2
k,t =

+∞∑

k=1

ε(k, t)2σ2
k

=
νt−1∑

k=1

ε(k, t)2σ2
k + ε(νt, t)2σ2

νt
+

+∞∑

k=νt+1

ε(k, t)2σ2
k

=
νt−1∑

k=1

1.σ2
k + ε(νt, t)2σ2

νt
+

+∞∑

k=νt+1

0.σ2
k

= sνt−1 + ε(νt, t)2σ2
νt

= sνt−1 + (t− sνt−1)
= t.

(d) On a
+∞∑

k=n+1

τ2
k,t =

+∞∑

k=1

τ2
k,t −

n∑

k=1

τ2
k,t,

donc d’après la question précédente

+∞∑

k=n+1

τ2
k,t = t−

n∑

k=1

τ2
k,t.

Mais par définition de l’espérance conditionnelle, τk,t est Fk−1-mesurable,
donc pour tout k entre 1 et n τ2

k,t est Fk−1-mesurable, et donc Fn−1-
mesurable, ce qui entraine que

∑+∞
k=n+1 τ2

k,t = t−∑n
k=1 τ2

k,t est Fn−1-
mesurable.
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5. Pour tout n ∈ N, on pose

T t
n =

∑

k≤n

Zt
k +

+∞∑

k=n+1

τk,tNk (1)

(a) Pour k > νt ε(k, t) = 0 donc τk,t = 0, ce qui fait que presque sûrement
les termes de la somme sont nuls à partir d’un certain rang.

(b) On a

T t
0 =

+∞∑

k=1

τk,tNk = lim
p→+∞

p∑

k=1

τk,tNk

Donc

e
i

sT t
0√
t = lim

p→+∞
exp(i

s√
t

p∑

k=1

τk,tNk).

Comme | exp(i s√
t

∑p
k=1 τk,tNk)| ≤ 1 pour tout p, le théorème de

convergence dominée s’applique, et on a

E[ei
sT t

0√
t |F∞] = lim

p→+∞
E[exp(i

s√
t

p∑

k=1

τk,tNk)|F∞]

= lim
p→+∞

exp(−s2

t

p∑

k=1

τ2
k,t)

= exp(
−s2

t

+∞∑

k=1

τ2
k,t)

= exp(
−s2

t
t) = exp(−s2)

En réintégrant, on a

E[ei
sT t

0√
t ] = EE[ei

sT t
0√
t |F∞] = exp(−s2),

ce qui montre que T t
0√
t

a même fonction caractéristique que la loi
N (0, 1): comme la fonction caractéristique caractérise la loi, on a
donc T t

0√
t
N(0, 1).

6. On a pour tout N ≥ 1

Ee
i

sT t
N√
t − Ee

i
sT t

0√
t =

N∑
n=1

Ee
i

sT t
n√
t − Ee

i
sT t

n−1√
t .
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On en déduit

|Ee
i

sT t
N√
t − Ee

i
sT t

0√
t | ≤

N∑
n=1

|Ee
i

sT t
n√
t − Ee

i
sT t

n−1√
t |

≤
+∞∑
n=1

|Ee
i

sT t
n√
t − Ee

i
sT t

n−1√
t |

En prenant N = νt, on obtient alors l’inégalité

|Ee
i

sT t
νt√
t − Ee

i
sT t

0√
t | ≤

+∞∑
n=1

|Ee
i

sT t
n√
t − Ee

i
sT t

n−1√
t |.

7. (a) Comme le processus (Zt
k)k≥1 est (Fk)k≥1-adapté,

∑n−1
k=1 Zt

k est Fn−1-
mesurable, ce qui implique que αn,t est Fn−1-mesurable. Comme
Fn−1 ⊂ F∞ ⊂ Gn, αn,t est Gn-mesurable.
D’autre part

• Zt
n est mesurable par rapport à Fn ⊂ F∞ ⊂ Gn.

• τn,t est mesurable par rapport à Fn−1 ⊂ F∞ ⊂ Gn.
• Nn est mesurable par rapport à σ(Nn) ⊂ Gn.

Ces trois éléments entrâınent que βn,t est Gn-mesurable.
Ainsi

E[ei
sT t

n√
t − e

i
sT t

n−1√
t |Gn] = E[αn,tβn,tγn,t|Gn] = αn,tβn,tE[γn,t|Gn].

Comme

γn,t = lim
p→+∞

exp
( is√

t

p∑
k=n+1

τk,tNk

)
,

on a, toujours grâce au théorème de convergence dominée (avec dom-
ination par 1):

E[γn,t|Gn] = lim
p→+∞

E exp
( is√

t

p∑
k=n+1

τk,tNk

∣∣Gn)

= lim
p→+∞

exp
(− s2

2t

p∑
k=n+1

τ2
k,t

)

= exp
(− s2

2t

+∞∑
k=n+1

τ2
k,t

)

On a donc bien

E[ei
sT t

n√
t − e

i
sT t

n−1√
t |Gn] = αn,tβn,t exp(−s2

2t

+∞∑

k=n+1

τ2
k,t).
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(b) En réintégrant cette dernière égalité, on obtient

E[ei
sT t

n√
t − e

i
sT t

n−1√
t ] = Eαn,tβn,t exp(−s2

2t

+∞∑

k=n+1

τ2
k,t).

Le deuxième membre peut s’évaluer en désintégrant par rapport à
Fn−1:

E[αn,tβn,t exp(−s2

2t

+∞∑

k=n+1

τ2
k,t)|Fn−1] = αn,t exp(−s2

2t

+∞∑

k=n+1

τ2
k,t)E[βn,t|Fn−1]

En effet αn,t et exp(− s2

2t

∑+∞
k=n+1 τ2

k,t) sont mesurables par rapport à
la tribu Fn−1: pour la première, on a montré celà au 7)a) et pour la
deuxième celà découle de la question 4d. Comme 0 ≤ alphan,t ≤ 1
et exp(− s2

2t

∑+∞
k=n+1 τ2

k,t) ≤ 1, on a donc

|E[αn,tβn,t exp(−s2

2t

+∞∑

k=n+1

τ2
k,t)|Fn−1| ≤ |E[βn,t|Fn−1]|,

d’où

|Eαn,tβn,t exp(−s2

2t

+∞∑

k=n+1

τ2
k,t)| ≤ E|E[βn,t|Fn−1]|,

soit

|E(
e
i

sT t
n√
t − e

i
sT t

n−1√
t

)| ≤ E|E[βn,t|Fn−1]|.
(c) Posons Ψ(x) = eix − (1 + ix− 1

2x2). On a

βn,t = 1 +
is√
t
Zt

n −
s2

2t
(Zt

n)2 + Ψ(
is√
t
Zt

n)− (1 +
is√
t
τn,tNn − s2

2t
τ2
n,tN

2
n + Ψ(

is√
t
τn,tNn))

=
is√
t
(Zt

n − τn,tNn)− s2

2t
((Zt

n)2 − τ2
n,tN

2
n) + Ψ(

is√
t
Zt

n)−Ψ(
is√
t
τn,tNn)

D’après 3b), on a E[Zt
n|Fn−1] = 0. On a également E[τn,tNn|Fn−1] =

τn,tE[Nn|Fn−1] = τn,tE[Nn] = τn,t.0 = 0. E[(Zt
n)2|Fn−1] = τ2

k,t et
E[τ2

n,tN
2
n|Fn−1] = τ2

n,tE[N2
n|Fn−1] = τ2

n,tE[N2
n] = τ2

n,t.1 = τ2
n,t. Il

s’ensuit que

E[βn,t|Fn−1] = E[Ψ(
is√
t
Zt

n)−Ψ(
is√
t
τn,tNn)|Fn−1].
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Donc

E|E[βn,t|Fn−1]| = E|E[Ψ(
is√
t
Zt

n)−Ψ(
is√
t
τn,tNn)|Fn−1]|

≤ EE[|Ψ(
is√
t
Zt

n)|+ |Ψ(
is√
t
τn,tNn)||Fn−1]|

≤ EΨ(
is√
t
Zt

n)|+ |Ψ(
is√
t
τn,tNn)|

≤ E
|s|3
6t3/2

(|Zt
n|3 + |τn,tNn|3

)

≤ |s|3
6t3/2

(E|Zt
n|3 + E|τn,tNn|3)

(d) En utilisant la question 4b), on a

E|Zt
n|3 + E|τn,tNn|3 ≤ K(E(Zt

n)2 + Eτ2
n,t|Nn|3)

Mais comme τ2
n,t = E[(Zt

n)2|Fn−1], on a Eτ2
n,t = E[(Zt

n)2. D’autre
part, comme Nn est indépendante de F∞, elle l’est de τn,t, donc
Eτ2

n,t|Nn|3 = Eτ2
n,tE|Nn|3 = Eτ2

n,tE|N0|3, où la dernière égalité provient
du fait que les Nn ont toutes même loi. Finalement,

E|Zt
n|3 + E|τn,tNn|3 ≤ K(1 + E|N0|3)Eτ2

k,t.

En combinant avec b) et c), celà donne

|Ee
i

sT t
n√
t − Ee

i
sT t

n−1√
t | ≤ |s|3

6t3/2
K(1 + E|N0|3)Eτ2

n,t.

8. En combinant 6) et 7c), on obtient

|Ee
i

sT t
νt√
t − Ee

i
sT t

0√
t | ≤ |s|3

6t3/2
K(1 + E|N0|3)

+∞∑
n1

Eτ2
n,t.

Mais d’après le théorème de convergence monotone, on a

+∞∑
n1

Eτ2
n,t = E

+∞∑
n1

τ2
n,t = Et,

où l’on a utilisé la question 4c). Finalement

|Ee
i

sT t
νt√
t − exp(−s2

2
)| = |Ee

i
sT t

νt√
t − Ee

i
sT t

0√
t |

≤ |s|3
6t1/2

K(1 + E|N0|3),
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qui tend vers 0 lorsque t tend vers +∞. Ainsi la fonction caractéristique
de T t

n√
t

converge ponctuellement vers s 7→ exp(− s2

2 ) qui est la fonction
caractéristique de N (0, 1). D’après le théorème de Levy, cela entrâıne que

Tνt√
t

=⇒ N (0, 1).

9.

T t
νt

=
∑

k≤νt

Zt
k +

+∞∑

k=νt+1

τk,tNk

On a déjà vu que τk,t = 0 pour k > νt. D’où

T t
νt

=
∑

k≤νt

Zt
k

=
∑

k≤νt

ε(k, t)Yk

=
∑

k<νt

ε(k, t)Yk + ε(νt, t)Yνt

=
∑

k<νt

Yk + ε(νt, t)Yνt

=
∑

k≤νt

Yk − Yνt + ε(νt, t)Yνt

=
∑

k≤νt

(Xk −Xk−1)− Yνt + ε(νt, t)Yνt

= Xνt − (1− ε(νt, t))Yνt,t

Soit donc Tνt + (1− ε(νt, t))Yνt = Xνt .

10. D’après le théorème de Levy, il suffit de montrer que pour tout s réel
E exp(isXνt√

t
) tend vers exp(− s2

2 ). Mais d’après la question précédente,

E exp(isTνt√
t
) tend vers exp(− s2

2 ). Il suffit donc de prouver que pour tout
s réel

E exp(is
Xνt√

t
− E exp(is

Tνt√
t
)

tend vers 0. Mais

Montrer que
Xνt√

t
=⇒ N (0, 1).

E exp(is
Xνt√

t
− E exp(is

Tνt√
t
) = E(exp(is

Xνt√
t
− exp(is

Tνt√
t
))

= E exp(is
Tνt√

t
)(exp(is

(1− ε(νt, t))Yνt√
t

)− 1)
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D’où

|E exp(is
Xνt√

t
− E exp(is

Tνt√
t
)| ≤ E| exp(is

(1− ε(νt, t))Yνt√
t

)− 1|

Ce dernier majorant tend vers 0 d’après le théorème de convergence dominée.
En effet | exp(is (1−ε(νt,t))Yνt√

t
) − 1|| ≤ 2 et | exp(is (1−ε(νt,t))Yνt√

t
) − 1| tend

presque sûrement vers 0 car | (1−ε(νt,t))Yνt√
t

| ≤ K√
t
.
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