Probabilités et statistique

Olivier Garet

Université de Lorraine – IECL

La convergence en loi, partie 1

Retour sur la LGN

Théorème (Etemadi)

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires deux à deux indépendantes, de même loi μ . On suppose que μ admet un moment d'ordre 1. Alors

$$\frac{X_1+\cdots+X_n}{n} \xrightarrow{p.s.} \mathbb{E}X_1.$$

Retour sur la LGN

Théorème (Etemadi)

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires deux à deux indépendantes, de même loi μ . On suppose que μ admet un moment d'ordre 1. Alors

$$\frac{X_1+\cdots+X_n}{n} \xrightarrow{p.s.} \mathbb{E}X_1.$$

Un corollaire:

Corollaire (Méthode de Monte-Carlo)

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles deux à deux indépendantes, de même loi μ . Alors pour tout borélien A de $\mathbb R$ Alors

$$\frac{1\!\!1_{\{X_1\in A\}}+\cdots+1\!\!1_{\{X_n\in A\}}}{n}\xrightarrow{p.s.}\mathbb{E}(1\!\!1_{\{X_1\in A\}})=\mathbb{P}(X_1\in A)=\mu(A).$$

Simulation

On voulait évaluer la probabilité que $S = d(A, B)^2 \le 1$, où A et B sont deux points indépendants suivant la loi uniforme sur un carré unitaire.

Simulation

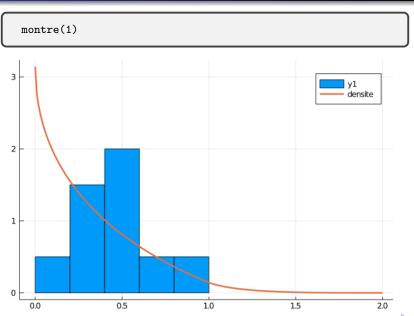
On voulait évaluer la probabilité que $S = d(A, B)^2 \le 1$, où A et B sont deux points indépendants suivant la loi uniforme sur un carré unitaire.

```
function test(N)
s=0
for i=1:N
  a=(rand()-rand())^2  # a=(x_A-x_B)^2
  b=(rand()-rand())^2  # b=(y_A-y_B)^2
  s+=(a+b<1)  # +1 pour s si la somme est <1
end
return(s/N)
end</pre>
```

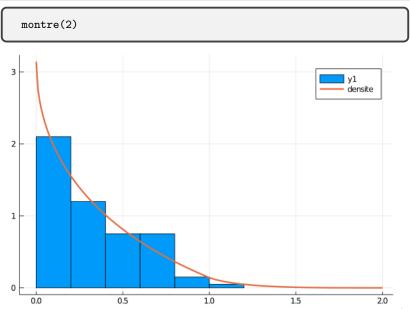
On veut faire plus loin : approcher la loi de S

```
using Plots
function carres(N)
a=(rand(N)-rand(N)).^2; b=(rand(N)-rand(N)).^2
return(a+b)
end
function densite(t)
if (t<=1) return(pi-4*sqrt(t)+t)</pre>
 else return (-2*asin(1-2/t)-4*(1-sqrt(t-1))+2-t)
 end
end
function montre(n)
c=carres(10^n); histogram(c,normalize=true)
plot! (0:0.01:2, densite, linewidth=2,
  label="densite")
end
```

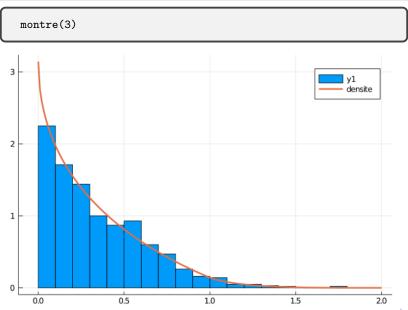
Histogramme: 10 simulations



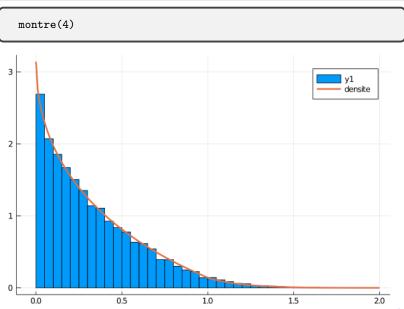
Histogramme: 100 simulations



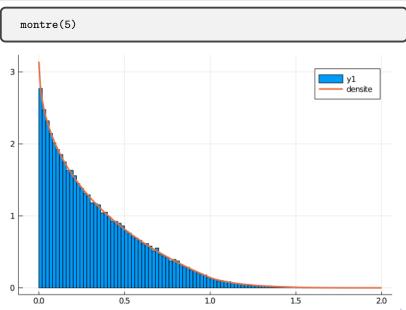
Histogramme: 1000 simulations



Histogramme: 10 000 simulations



Histogramme: 100 000 simulations



Problème : il s'agit de comparer une loi discrète (représentée par des bâtons) et une loi continue (représentée par la densité).

Problème : il s'agit de comparer une loi discrète (représentée par des bâtons) et une loi continue (représentée par la densité). On introduit la convergence en loi.

Problème : il s'agit de comparer une loi discrète (représentée par des bâtons) et une loi continue (représentée par la densité). On introduit la convergence en loi.

Définition '

Soit $(\mu_n)_{n\geq 1}$, μ des mesures de probabilité sur \mathbb{R}^d . On dit que (μ_n) converge faiblement (ou en loi) vers μ si pour toute fonction f continue bornée de \mathbb{R}^d dans \mathbb{R} , on a

$$\lim_{n\to+\infty} \int_{\mathbb{R}^d} f \ d\mu_n = \int_{\mathbb{R}^d} f \ d\mu.$$

On écrit $\mu_n \Longrightarrow \mu$.

Problème : il s'agit de comparer une loi discrète (représentée par des bâtons) et une loi continue (représentée par la densité). On introduit la convergence en loi.

Définition |

Soit $(\mu_n)_{n\geq 1}$, μ des mesures de probabilité sur \mathbb{R}^d . On dit que (μ_n) converge faiblement (ou en loi) vers μ si pour toute fonction f continue bornée de \mathbb{R}^d dans \mathbb{R} , on a

$$\lim_{n\to+\infty} \int_{\mathbb{R}^d} f \ d\mu_n = \int_{\mathbb{R}^d} f \ d\mu.$$

On écrit $\mu_n \Longrightarrow \mu$.

Si (X_n) , X sont des variables (vecteurs) aléatoires,

- $X_n \Longrightarrow \mu$ signifie $\mathbb{P}_{X_n} \Longrightarrow \mu$;
- $X_n \Longrightarrow X$ signifie $\mathbb{P}_{X_n} \Longrightarrow \mathbb{P}_X$.

En particulier $,X_n \Longrightarrow X$ si et seulement si pour tout f continue bornée, $\mathbb{E}(f(X_n)) \to \mathbb{E}(f(X))$. En effet

$$\int_{\mathbb{R}^d} f d\mathbb{P}_{X_n} = \int_{\Omega} f(X_n) d\mathbb{P} = \mathbb{E}(f(X_n)) \operatorname{et} \int_{\mathbb{R}^d} f d\mathbb{P}_X = \int_{\Omega} f(X) d\mathbb{P} = \mathbb{E}(f(X))$$

Corollaire

La convergence presque sûre entraîne la convergence en loi.

En particulier $,X_n\Longrightarrow X$ si et seulement si pour tout f continue bornée, $\mathbb{E}(f(X_n))\to\mathbb{E}(f(X))$. En effet

$$\int_{\mathbb{R}^d} \!\! f d\mathbb{P}_{X_n} = \!\! \int_{\Omega} \!\! f(X_n) d\mathbb{P} = \mathbb{E}(f(X_n)) \mathrm{et} \int_{\mathbb{R}^d} \!\! f d\mathbb{P}_X = \!\! \int_{\Omega} \!\! f(X) d\mathbb{P} = \mathbb{E}(f(X))$$

Corollaire

La convergence presque sûre entraîne la convergence en loi.

Démonstration.

Si $X_n \xrightarrow{p.s.} X$, alors pour f continue bornée,

- $f(X_n) \xrightarrow{p.s.} f(X)$ (continuité)
- $|f(X_n)| \leq ||f||_{\infty}$
- $\mathbb{E}(\|f\|_{\infty}) = \|f\|_{\infty} < +\infty$

Et on conclut avec le théorème de convergence dominée.

Théorème

$$Si X_n \xrightarrow{\mathbb{P}} X$$
, alors $X_n \Longrightarrow X$.

Théorème

$$Si X_n \xrightarrow{\mathbb{P}} X$$
, alors $X_n \Longrightarrow X$.

Démonstration.

Soit f continue bornée. La suite $\mathbb{E}(f(X_n))$ est bornée.

Théorème

$$Si X_n \xrightarrow{\mathbb{P}} X$$
, alors $X_n \Longrightarrow X$.

Démonstration.

Soit f continue bornée. La suite $\mathbb{E}(f(X_n))$ est bornée.

Soit a une valeur d'adhérence : $a = \lim_{n \in I, n \to +\infty} \mathbb{E}(f(X_n))$.

Théorème

 $Si X_n \xrightarrow{\mathbb{P}} X$, alors $X_n \Longrightarrow X$.

Démonstration.

Soit f continue bornée. La suite $\mathbb{E}(f(X_n))$ est bornée.

Soit a une valeur d'adhérence : $a = \lim_{n \in I, n \to +\infty} \mathbb{E}(f(X_n))$.

Comme
$$X_n \xrightarrow{\mathbb{P}} X$$
, $\exists J \subset I$, avec $X_n \xrightarrow[n \in J, n \to +\infty]{} X$ p.s..

Théorème

 $Si X_n \xrightarrow{\mathbb{P}} X$, alors $X_n \Longrightarrow X$.

Démonstration.

Soit f continue bornée. La suite $\mathbb{E}(f(X_n))$ est bornée.

Soit a une valeur d'adhérence : $a = \lim_{n \in I, n \to +\infty} \mathbb{E}(f(X_n))$.

Comme $X_n \xrightarrow{\mathbb{P}} X$, $\exists J \subset I$, avec $X_n \xrightarrow[n \in J, n \to +\infty]{} X$ p.s..

D'après ce qui précède $\lim_{n\in J, n\to +\infty} \mathbb{E}(f(X_n)) = \mathbb{E}(f(X))$.

Théorème

 $Si X_n \xrightarrow{\mathbb{P}} X$, alors $X_n \Longrightarrow X$.

Démonstration.

Soit f continue bornée. La suite $\mathbb{E}(f(X_n))$ est bornée.

Soit a une valeur d'adhérence : $a = \lim_{n \in I, n \to +\infty} \mathbb{E}(f(X_n))$.

Comme $X_n \xrightarrow{\mathbb{P}} X$, $\exists J \subset I$, avec $X_n \xrightarrow[n \in J, n \to +\infty]{} X$ p.s..

D'après ce qui précède $\lim_{n\in J, n\to +\infty} \mathbb{E}(f(X_n)) = \mathbb{E}(f(X))$.

Finalement $a = \mathbb{E}(f(X))$.

Théorème

 $Si X_n \Longrightarrow a$, alors $X_n \stackrel{\mathbb{P}}{\longrightarrow} a$.

Théorème

$$Si X_n \Longrightarrow a$$
, alors $X_n \stackrel{\mathbb{P}}{\longrightarrow} a$.

Théorème

$$Si X_n \Longrightarrow a$$
, alors $X_n \stackrel{\mathbb{P}}{\longrightarrow} a$.

$$\mathbb{P}(\|X_n-a\|>\varepsilon)$$

Théorème

$$Si X_n \Longrightarrow a$$
, alors $X_n \stackrel{\mathbb{P}}{\longrightarrow} a$.

$$\mathbb{P}(\|X_n - a\| > \varepsilon) \le \mathbb{P}(\arctan \|X_n - a\| > \arctan \varepsilon)$$

Théorème

$$Si X_n \Longrightarrow a$$
, alors $X_n \stackrel{\mathbb{P}}{\longrightarrow} a$.

$$\mathbb{P}(\|X_n - a\| > \varepsilon) \le \mathbb{P}(\arctan \|X_n - a\| > \arctan \varepsilon)$$

$$\le \frac{\mathbb{E}(\arctan \|X_n - a\|)}{\arctan \varepsilon}$$

Théorème

$$Si X_n \Longrightarrow a$$
, alors $X_n \stackrel{\mathbb{P}}{\longrightarrow} a$.

Preuve : soit $\varepsilon > 0$.

$$\mathbb{P}(\|X_n - a\| > \varepsilon) \le \mathbb{P}(\arctan \|X_n - a\| > \arctan \varepsilon)$$

$$\le \frac{\mathbb{E}(\arctan \|X_n - a\|)}{\arctan \varepsilon}$$

qui tend vers 0 car $x \mapsto \arctan ||x - a||$ est continue bornée.

Théorème

$$Si X_n \Longrightarrow a$$
, alors $X_n \stackrel{\mathbb{P}}{\longrightarrow} a$.

Preuve : soit $\varepsilon > 0$.

$$\mathbb{P}(\|X_n - a\| > \varepsilon) \le \mathbb{P}(\arctan \|X_n - a\| > \arctan \varepsilon)$$

$$\le \frac{\mathbb{E}(\arctan \|X_n - a\|)}{\arctan \varepsilon}$$

qui tend vers 0 car $x \mapsto \arctan ||x - a||$ est continue bornée.

Théorème

Soit g une fonction continue définie sur \mathbb{R}^d . Si la suite $(X_n)_{n\geq 1}$ converge en loi vers X, alors la suite $(Y_n)_{n\geq 1}$ définie par $Y_n=g(X_n)$ converge en loi vers g(X).

Théorème

$$Si X_n \Longrightarrow a$$
, alors $X_n \stackrel{\mathbb{P}}{\longrightarrow} a$.

Preuve : soit $\varepsilon > 0$.

$$\mathbb{P}(\|X_n - a\| > \varepsilon) \le \mathbb{P}(\arctan \|X_n - a\| > \arctan \varepsilon)$$

$$\le \frac{\mathbb{E}(\arctan \|X_n - a\|)}{\arctan \varepsilon}$$

qui tend vers 0 car $x \mapsto \arctan ||x - a||$ est continue bornée.

Théorème

Soit g une fonction continue définie sur \mathbb{R}^d . Si la suite $(X_n)_{n\geq 1}$ converge en loi vers X, alors la suite $(Y_n)_{n\geq 1}$ définie par $Y_n=g(X_n)$ converge en loi vers g(X).

Preuve : si f est continue bornée, $f \circ g$ est continue bornée.

Un critère de convergence en loi

Théorème (Lemme de Scheffé)

Soient $(\Omega, \mathcal{A}, \mu)$ un espace mesuré; $f, (f_n)_{n \geq 1} : \Omega \to \mathbb{R}_+$ des applications positives intégrables par rapport à μ telles que

- a) $f_n \rightarrow f \mu p.p.$
- b) $\lim_{n\to\infty} \int_{\Omega} f_n \ d\mu(x) = \int_{\Omega} f \ d\mu(x).$

Alors $f_n \xrightarrow{L^1} f$.

Un critère de convergence en loi

Théorème (Lemme de Scheffé)

Soient $(\Omega, \mathcal{A}, \mu)$ un espace mesuré; $f, (f_n)_{n \geq 1} : \Omega \to \mathbb{R}_+$ des applications positives intégrables par rapport à μ telles que

- a) $f_n \rightarrow f \mu p.p.$
- b) $\lim_{n\to\infty} \int_{\Omega} f_n \ d\mu(x) = \int_{\Omega} f \ d\mu(x).$

Alors $f_n \xrightarrow{L^1} f$.

Démonstration.

$$|f - f_n| = f_n - f + 2(f - f_n) \mathbb{1}_{\{f \ge f_n\}}$$

Un critère de convergence en loi

Théorème (Lemme de Scheffé)

Soient $(\Omega, \mathcal{A}, \mu)$ un espace mesuré; $f, (f_n)_{n\geq 1} : \Omega \to \mathbb{R}_+$ des applications positives intégrables par rapport à μ telles que

- a) $f_n \rightarrow f \mu p.p.$
- b) $\lim_{n\to\infty} \int_{\Omega} f_n \ d\mu(x) = \int_{\Omega} f \ d\mu(x).$

Alors $f_n \xrightarrow{L^1} f$

Démonstration.

$$|f - f_n| = f_n - f + 2(f - f_n) \mathbb{1}_{\{f \ge f_n\}}$$

- $\int_{\Omega} f_n f \ d\mu \to 0$ par linéarité;
- $\int_{\Omega} (f f_n) \mathbb{1}_{\{f > f_n\}} \to 0$ par convergence dominée.

Corollaire

Si ν , et $(\nu_n)_{n\geq 1}$ admettent les densités f et $(f_n)_{n\geq 1}$ par rapport à μ et $f_n \to f$ $\mu-p.p.$ Alors (ν_n) converge faiblement vers ν .

Corollaire

Si ν , et $(\nu_n)_{n\geq 1}$ admettent les densités f et $(f_n)_{n\geq 1}$ par rapport à μ et $f_n\to f$ $\mu-p.p.$ Alors (ν_n) converge faiblement vers ν .

Preuve : pour g mesurable bornée (en particulier continue bornée)

$$\left| \int g \ d\nu_n - \int g \ d\nu \right| = \left| \int g f_n \ d\mu - \int g f \ d\mu \right|$$

$$\leq \int |g(f_n - f)| \ d\mu \leq ||g||_{\infty} ||f_n - f||_{L^1(\mu)},$$

Corollaire

Si ν , et $(\nu_n)_{n\geq 1}$ admettent les densités f et $(f_n)_{n\geq 1}$ par rapport à μ et $f_n\to f$ $\mu-p.p.$ Alors (ν_n) converge faiblement vers ν .

Preuve : pour g mesurable bornée (en particulier continue bornée)

$$\left| \int g \ d\nu_n - \int g \ d\nu \right| = \left| \int g f_n \ d\mu - \int g f \ d\mu \right|$$

$$\leq \int |g(f_n - f)| \ d\mu \leq ||g||_{\infty} ||f_n - f||_{L^1(\mu)},$$

Corollaire

Si X, $(X_n)_{n\geq 1}$ sont à valeurs dans D dénombrable et $\mathbb{P}(X_n=k) \to \mathbb{P}(X=k)$ pour tout $k \in D$, alors $(X_n)_{n\geq 1}$ converge en loi vers X.

Corollaire

Si ν , et $(\nu_n)_{n\geq 1}$ admettent les densités f et $(f_n)_{n\geq 1}$ par rapport à μ et $f_n\to f$ $\mu-p.p.$ Alors (ν_n) converge faiblement vers ν .

Preuve : pour g mesurable bornée (en particulier continue bornée)

$$\left| \int g \ d\nu_n - \int g \ d\nu \right| = \left| \int g f_n \ d\mu - \int g f \ d\mu \right|$$

$$\leq \int |g(f_n - f)| \ d\mu \leq ||g||_{\infty} ||f_n - f||_{L^1(\mu)},$$

Corollaire

Si X, $(X_n)_{n\geq 1}$ sont à valeurs dans D dénombrable et $\mathbb{P}(X_n=k) \to \mathbb{P}(X=k)$ pour tout $k \in D$, alors $(X_n)_{n\geq 1}$ converge en loi vers X.

Preuve : prendre pour μ la mesure de comptage sur D.

