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Partie I

1. EkX1 = 1Pk(X = 1) + (−1)Pk(X = −1) + (−2)Pk(X = −2) = 1−1−2
3 = − 2

3 .
EkX2

1 = 12Pk(X = 1) + (−1)2Pk(X = −1) + (−2)2Pk(X = 2) = 1+1+4
3 = 2.

Var X1 = EkX2
1 − (EkX1)2 = 2 − 4

9 = 14
9 . Comme les (Xn)n≥1 on toutes la

même loi, on a pour tout n ≥ 1, EkXn = − 2
3 et Var Xn = 14

9 . En revanche
EkX0 = k et Var X0 = 0. Par linéarité, EkSn = k − 2

3n. Comme Sn est
une somme de variables aléatoires indépendantes, Var Sn est la somme des
variances, donc Var Sn = 14

9 n.
2. Comme (Xn)n≥0 est à valeurs dans Z, (Sn)n≥0 est aussi à valeurs dans Z, et

par suite (Yn)n≥0 également. Par définition de T , on sait que Sn > 0 pour
n < T . Si T = +∞, alors on a pour tout n, n < T et ST∧n = Sn > 0 ≥ −1.
Supposons donc T fini. Comme (Sn)n≥0 est à valeurs entières, on a, pour
n < T , Sn ≥ 1. Comme ST = ST−1 + XT et que XT ≥ −2, on a alors
ST ≥ 1 + (−2) ≥ −1. Finalement, Sn ≥ −1 pour tout n ≤ T . Cependant,
T ∧ n ≤ T , donc on a bien ST∧n ≥ −1, ce qui achève de montrer que (Yn)n≥0

prend ses valeurs dans [−1, +∞[∩Z.
3. – Si n < T , alors Yn = Sn et Sn > 0, d’où |Yn| = Yn = max(Sn, 0).

– Sinon, on a n ≥ T (ce qui implique que T est fini) et Yn = ST Par définition
du temps d’arrêt, on a ST ≤ 0. Finalement Yn = ST ∈ Z ∩ [−1, +∞[∩] −
∞, 0] = {−1; 0}.

Il est facile de voir que dans les deux cas, on a bien |Yn| ≤ 1 + max(Sn, 0).
4. Par construction, la suite (Sn)n≥0 est adaptée à la filtration (Fn)n≥0 . Comme

T est le temps d’entrée de la suite (Sn)n≥0 dans le borélien R−, T est bien un
temps d’arrêt adaptée à la filtration (Fn)n≥0.

5. Montrons d’abord la première égalité :
– Si T ≤ n, alors T < +∞ et l’on a (n+1)∧T = n∧T = T , d’où Yn+1−Yn =

ST − ST = 0 = 11{T>n}Xn+1.
– Si T > n, alors T ≥ n + 1, d’où (n + 1) ∧ T = n + 1 ; de même n ∧ T = n.

Ainsi Yn+1 − Yn = Sn+1 − Sn = Xn+1 = 11{T>n}Xn+1.
Dans les deux cas, on a bien Yn+1 − Yn = 11{T>n}Xn+1.
Maintenant, il suffit de montrer que {Yn > 0} = {T > n}. Si T > n, on a
Yn = Xn et Xk > 0 pour tout k ≤ n, donc Yn > 0. Réciproquement, si T ≤ n,
T est fini et pour tout k ≥ T , Yk = Sk∧T = ST ≤ 0. En particulier Yn ≤ 0.
On a donc bien {Yn > 0} = {T > n}, ce qui achève la preuve.

6.

Yn = k + (Yn − Y0) = k +
n∑

k=1

(Yk − Yk−1) = k +
n∑

k=1

11{T>i−1}Xi

Comme T est un temps d’arrêt adapté à la filtration (Fn)n≥0, l’événement
{T > i−1} est Fi−1-mesurable, et donc la variable aléatoire 11{T>i−1} est Fi−1-
mesurable. Comme la suite (Fn)n≥0 est croissante pour l’inclusion, 11{T>i−1}
est Fn-mesurable. Finalement Yn est une somme de produits d’applications
Fn-mesurables, donc Yn est Fn-mesurable, ce qui montre que la suite (Yn)n≥0

est adaptée à la filtration (Fn). Comme Yn est Fn-mesurable, on a

Ek[Yn+1|Fn]− Yn = Ek[Yn+1|Fn]− Ek[Yn|Fn]
= Ek[(Yn+1 − Yn)|Fn]
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Cependant, d’après la question I.5, Yn+1 − Yn = 11{T>n}Xn+1, d’où

Ek[Yn+1|Fn]− Yn = Ek[(Yn+1 − Yn)|Fn]
= Ek[11{T>n}Xn+1|Fn]

= 11{T>n}Ek[Xn+1|Fn] car {T > n} ∈ Fn

= 11{T>n}Ek[Xn+1] car Xn+1 est indépendante de Fn

= −2
3
11{T>n}

≤ 0,

ce qui montre que (Yn)n≥0 est une surmartingale.
7. Soit x ≥ 0 et n ≥ 0.

Pk(Sn − k ≥ x) = Pk(Sn +
2
3
n− k ≥ x +

2
3
n)

= Pk(Sn − EkSn ≥ x +
2
3
n)

≤ Pk(|Sn − EkSn| ≥ x +
2
3
n)

≤ Var Sn

(x + 2
3n)2

d’après l’inégalité de Tchebitchev

≤
14
9 n

(x + 2
3n)2

=
14n

(3x + 2n)2
.

8. max(Sn − k, 0) est une variable aléatoire positive, donc

Ek max(Sn − k, 0) =
∫ +∞

0

Pk(max(Sn − k, 0) > x) dx

Cependant, pour x ≥ 0, Pk(max(Sn − k, 0) > x) = Pk(Sn − k > x), d’où

Ek max(Sn − k, 0) =
∫ +∞

0

Pk(Sn − k ≥ x)

≤ 14n

9

∫ +∞

0

dx

(x + 2
3n)2

=
14n

9
1

(0 + 2
3n)

≤ 7
2
.

9. On a

|Yn| ≤ 1 + max(Sn, 0) = 1 + k + max(Sn − k,−k) ≤ 1 + k + max(Sn − k, 0)

Ainsi

∀n ≥ 0 Ek| − Yn| = Ek|Yn| ≤ 1 + k + Ek max(Sn − k, 0) ≤ 1 + k +
7
2

Ainsi, sous Pk (−Yn) est une sous-martingale bornée dans L1. D’après le
théorème de Doob, (−Yn) converge donc presque sûrement vers une variable
aléatoire réelle Z, donc (Yn)n≥0 converge Pk presque sûrement vers Y∞ = −Z.

10. Supposons que (ω est tel que) (Yn)n≥0 converge. Comme (Yn)n≥0 est à valeurs
dans Z qui est discret, (Yn)n≥0 est constante à partir d’un certain rang, donc
il existe n tel que Yn+1 − Yn = 0. Cependant Yn+1 − Yn = 11{T>n}Xn+1.
Comme Xn+1 6= 0, on a nécessairement 11{T>n} = 0, donc T ≤ n < +∞. Ainsi
{(Yn)n≥0 converge} ⊂ {T < +∞}, d’où Pk(T < +∞) = 1.

11. D’après la loi forte des grands nombres, on sait que lorsque n tend vers l”infini,
Sn−k

n tend presque sûrement vers EkX1 = −2/3, ce qui entrâıne que Sn

n tend
presque sûrement vers −2/3 : ainsi, pour n assez grand, on aura Sn

n ≤ 0, d’où
Sn ≤ 0 : cela montre que T est presque sûrement fini. Mais pour n > T ,
Yn = YT , donc Yn converge presque sûrement.
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12. Soit F : Z× Z→ Z définie par

F (x, y) = x + 11{x>0}y =

{
x si x ≤ 0
x + y sinon

.

D’après la question I.5, on a Yn+1 − Yn = 11{Yn>0}Xn+1. Ainsi

Yn+1 = Yn + (Yn+1 − Yn) = Yn + 11{Yn>0}Xn+1 = F (Yn, Xn+1),

où encore Yn+1 = fn+1(Xn+1), avec fn(x) = F (x,Xn). Comme (Xn)n≥1 est
une suite de variables aléatoires indépendantes identiquement distribuées, il
s’ensuit que (Yn) est une châıne de Markov de matrice de passage (pi,j), avec
pi,j = Pk(f1(i) = j). On a

{
p−1,−1 = Pk(f1(−1) = −1) = Pk(F (−1, X1) = −1) = 1
p0,0 = Pk(f1(0) = 0) = Pk(F (0, X1) = 0) = 1,

et, pour j ∈ {−2;−1; 1} et n ≥ 1

pn,n+k = Pk(f1(n) = n+k) = Pk(F (n,X1) = n+k) = Pk(n+X1 = n+k) = Pk(X1 = k) =
1
3
.

Comme on l’a déjà noté (Yn) prend ses valeurs dans l’ensemble des entiers
naturels supérieurs ou égaux à -1. La châıne démarre bien de Y0 = X0 = k.

Partie II

1. Notons A = {ω ∈ RN; lim
n→+∞

ωi = 0} et θ l’opérateur usuel de translation.

Soit k ≥ 1.

uk = Pk(Y ∈ A)
= Pk(θ(Y ) ∈ A)
= Pk(Y1 = k + 1, θ(Y ) ∈ A) + Pk(Y1 = k − 1, θ(Y ) ∈ A) + Pk(Y1 = k − 2, θ(Y ) ∈ A)
= Pk(Y1 = k + 1)Pk+1(Y ∈ A) + Pk(Y1 = k − 1)Pk−1(Y ∈ A)

+Pk(Y1 = k − 2)Pk−2(Y ∈ A)

=
1
3
Pk+1(Y ∈ A) +

1
3
Pk−1(Y ∈ A) +

1
3
Pk−2(Y ∈ A)

=
uk+1 + uk−1 + uk−2

3
.

Les fonctions (fk)k≥1 laissent les points 0 et −1 stables donc

P0(A) ≥ P0(∀i ≥ 0 Yi = 0) = P0(Y0 = 0) = 1,

de sorte que u0 = 1. De la même manière

P−1(Y∞ = −1) ≥ P−1(∀i ≥ 0 Yi = −1) = P−1(Y0 = −1) = 1,

ce qui entrâıne que u−1 = P−1(Y∞ = 0) = 0.
2. L’équation

∀k ≥ 1 uk =
uk+1 + uk−1 + uk−2

3
. (1)

peut se réécrire sous la forme

∀k ≥ 1 uk+1 = 3uk − uk−1 − uk−2. (2)

Considérons l’application de Φ de E dans R3 qui a v associe (v−1, v0, v1). Soit
v ∈ kerΦ : v−1 = v0 = v1 = 0. Il est facile de montrer par récurrence grâce
à (2) que pour tout i ≥ −1, on a vi = 0, ce qui signifie que v = 0. Ainsi
dimkerΦ = 0, d’où dim E = dim Im Φ ≤ dimR3 = 3.
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La suite (xk)k≥−1 est dans E si et seulement si on a

∀k ≥ 1 xk+1 = 3xk − xk−1 − xk−2,

soit en simplifiant par xk−2 (qui est non nul).

x3 − 3x2 + x + 1 = 0.

1 est une racine évidente de l’équation. En effectuant la division euclidienne
de x3−3x2+x+1 par x−1, on obtient x3−3x2+x+1 = (x−1)(x2−2x−1) =
(x− 1)(x− r1)(x− r2), avec r1 = 1−√2 et r2 = 1 +

√
2. Ainsi x = 1, x = r1

et x = r2 sont les valeurs possibles pour que (xi)i≥−1 soit dans E. Notons
a = (1)i≥1, b = (ri

1)i≥1 et c = (ri
1)i≥1. Supposons qu’il existe α, β, γ dans R

avec αa + βb + γc = 0. Si γ 6= 0, alors (αa + βb + γc)i est équivalent à γri
2

lorsque i tend vers +∞, ce qui contredirait αa + βb + γc = 0. On sait donc
que γ = 0. Ainsi αa + βb = 0, donc si (α, β) 6= (0, 0), les vecteurs (a0, a1) et
(b0, b1) sont liés, mais le déterminant

∣∣∣∣
a0 a1

b0 b1

∣∣∣∣ =
∣∣∣∣
1 1
1 r1

∣∣∣∣ = r1 − 1

est non nul, donc ce n’est pas possible. Finalement (α, β, γ) = (0, 0, 0) et la
famille (a, b, c) est libre. Comme elle est de cardinal supérieure où égale à la
dimension de E, c’est une base de E (qui est donc de dimension 3).

3. Soit v ∈ V . Comme (a, b, c) est une base de E ⊃ V , il existe (α, β, γ) avec
v = αa + βb + γc. Si on avait γ 6= 0, on aurait équivalent à vi ∼ γri

2 lorsque
i tend vers +∞, ce qui contredirait que v est bornée car r2 > 1. Ainsi γ = 0,
donc V ⊂ Vect(a, b). Cependant, il est facile de voir que a et b sont dans
V : en effet, a et constante et b tend vers 0 en l’infini car |r1| < 1. Ainsi
V = Vect(a, b) et a et b en forment une base puisque (a, b) est libre.

4. On a déjà vu que u est dans E. u est bornée car |uk| = Pk(Y∞ = 0) ≤ 1, donc
u ∈ V . Comme (a, b) est une base de V , il existe α et β tels que u = αa + βb,
soit

∀k ≥ −1 uk = α + βrk
1 .

Comme u0 = 1 et u−1 = 0, on a le système

{
α + β = 1
α + βr−1

1 = 0 ⇐⇒
{

(1− r1)α = 1
α + β = 1 ⇐⇒

{
α = 1

1−r1
= 1√

2

β =
√

2−1√
2

= − r1√
2

Ainsi

∀k ≥ −1 Pk(Y∞ = 0) =
1− (1−√2)k+1

√
2

.

5. Y∞ est une limite de variables aléatoires à valeurs dans Z∩ [−1, +∞[, qui est
fermé dans R, donc Y∞ est à valeurs dans Z ∩ [−1, +∞[. Par ailleurs, on sait
que T < +∞ presque sûrement, et pour n ≥ T , Yn = ST ; donc Y∞ = ST .
Cependant par définition de T , ST ≤ 0, donc comme on l’a déjà remarqué
ST ∈ Z∩ [−1,+∞[∩]−∞, 0] = {−1; 0}, et Y∞ est à support dans {−1, 0}. On
sait déjà que Pk(Y∞ = 0) = 1−(1−√2)k+1

√
2

, donc on connait toute la loi puisque

Pk(Y∞ = −1) = 1− Pk(Y∞ = 0) = 1− 1−(1−√2)k+1
√

2
.

FIN
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