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Le sujet est constitué de deux exercices et d’un problème indépendants.

Par commodité d’écriture, on écrit parfois P (A,B) à la place de P (A ∩B).
Ces deux expressions sont équivalentes.

Exercice I

Le dessin ci-dessous donne pour chaque point la distance à A, suivi du nombre
le chemins de longueur minimale.
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Exercice II

1. Notons Cx l’ensemble des parties de X contenant x. Il n’est pas difficile
de voir que l’application A 7→ A\{x} réalise une bijection de Cx dans
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B(X\{x}), d’application réciproque B 7→ B ∪ {x}. On en déduit que
|Cx| = |B(X\{x})| = 2X\{x}| = 2n−1.

2. On a vu en cours que s réalisait une bijection de P 2
f dans N. On a noté p

la bijection réciproque.

Soit u ∈ {0, 1, . . . , 2n − 1}: il est facile de voir que pour tout x dans
p(u), on a x ≤ ∑

y∈p(u)y = u. Ainsi x ≤ 2n − 1. Mais comme x est
une puissance de deux, on a x ≤ 2n−1. Ainsi p(u) ∈ P(Pn). On en
déduit p({0, 1, . . . , 2n − 1}) ⊂ P(Pn). Comme p est une bijection, on a
|p({0, 1, . . . , 2n − 1})| = |{0, 1, . . . , 2n − 1}| = 2n. D’autre part |P(Pn)| =
2n. Quand un ensemble fini est inclus dans un ensemble de même cardinal,
ils sont égaux: p({0, 1, . . . , 2n − 1}) = P(Pn), ce qui est équivalent à dire
que {0, 1, . . . , 2n − 1} = s(P(Pn)), donc la restriction de la bijection s à s
à P(Pn) induit une bijection de P(Pn) dans {0, 1, . . . , 2n − 1}.

3. On cherche les m ∈ {0, . . . , 2n − 1} tels que 2k ∈ p(m). Mais d’après la
question précédente m ∈ {0, . . . , 2n − 1} si et seulement si p(m) ∈ P(Pn).
Ainsi, on cherche les m tels que p(m) ∈ P(Pn) et 2k ∈ p(m). Comme p est
une bijection, cela revient à chercher les A tels que A ∈ P(Pn) et 2k ∈ A.
Comme 2k ∈ Pn, il y a d’après la première question 2n−1 tels ensembles
A, donc 2n−1 tels entiers m.

4. Remarquons que tout entier x est somme digitale des éléments de p(x).
Si on décompose chaque entier de 0 à 2n − 1 comme somme digitale de
puissance de deux, on vois que chaque puissance de deux de la forme 2k,
avec 0 ≤ k < n apparâıt 2n−1 fois dans la somme totale. Mais pour n ≥ 2,
2n−1 est pair; ainsi comme la somme digitale de deux nombres égaux est
nulle, on en déduit que la somme digitale totale est nulle.

5. (a) Il y a en tout 1 + 2 + · · ·+ 16 = (16× 17)/2 = 136 pions sur la table,
donc comme on en enlève au moins un par coup, la partie dure au
plus 120 coups.

(b) La somme digitale des nombres de 1 à 24 − 1 = 15 fait 0, d’après la
question précédente, donc la somme digitale des nombres de 16 fait
16 qui est non nulle: le joueur qui commence n’est donc pas dans
le noyau. S’il enlève le tas de hauteur 16, le second joueur est alors
dans une position où la somme digitale des hauteurs des tas fait 0,
donc il est bien dans le noyau.

Problème

Un responsable informatique d’une PME veut convaincre un décideur de rem-
placer un système d’exploitation propriétaire peu stable par une solution libre.
L’argument utilisé ici est la fréquence du gel d’une application.

Le décideur répond au responsable de lui transmettre chaque jour le temps
entre le boot du matin et le premier gel d’application, et lui affirme que l’on
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procédera au changement si lorsqu’il reviendra, le responsable pourra lui affirmer
qu’une application a planté moins d’une minute avant son lancement.

Pour chaque n ≥ 1, on note Xn la durée mesurée le n-ième jour. On note T
le jour où le décideur a le temps de se pencher sur le problème.

On suppose que les (Xn)n≥1 sont des variables aléatoires indépendantes suiv-
ant une loi exponentielle de paramètre λ > 0. On suppose que T suit une loi
géométrique de paramètre p ∈]0, 1[ et est indépendante de (Xn)n≥1.

On pose, pour tout n ≥ 1: mn = min(X1, . . . , Xn).
On note

G = mT

la plus courte durée avant gel constatée jusqu’au retour du décideur.
Question préliminaire: soit FX la fonction de répartition d’une variable

aléatoire X. On suppose que FX(0) = 0, que FX est continue sur [0, +∞[ et
dérivable sur ]0, +∞[. Montrer que X admet la densité fX(x) = −F ′X(x)11]0,+∞[(x).

Notons g(x) = −F ′X(x)11]0,+∞[(x). On doit montrer que

∀t ∈ R
∫ t

−∞
g(x) dx = FX(t). (1)

Voyons le cas t < 0: comme FX est une fonction de répartition, elle est
croissante positive. Comme elle est de plus nulle en zéro, elle est nulle en t.
D’autre part il est évident que

∫ t

−∞ g(x) dx = 0 pour t < 0, car g est nulle sur
R−. Ainsi (1) est vérifiée pour t < 0.

Pour t ≥ 0, on a

FX(t) = FX(t)− FX(0) =
∫ t

0

F ′X(x) dx =
∫ t

−∞
g(x) dx,

ce qui achève la preuve.

1. (a) Dire que le plus petit élément d’une famille finie est strictement
supérieur à t, c’est dire que chacun des éléments de cette famille
est est strictement supérieur à t, d’où l’identité

{mn > t} = ∩n
i=1{Xi > t}.

(b) mn est le plus petit nombre dans une famille de nombre positifs. Il
s’ensuit que Fmn(t) = P (Mn ≤ t) = 0 pout t strictement négatif.
Soit donc t ≥ 0: Fmn(t) = P (Mn ≤ t) = 1− P (Mn > t).

P (mn > t) = P (∩n
i=1{Xi > t})

=
n∏

i=1

P (Xi > t),

car les Xi sont indépendants. Pour tout i, on a
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P (Xi > t) =
∫ +∞

t

λe−λx dx = e−λt.

Il s’ensuit que P (mn > t) = (e−λt)n = e−nλt.

(c) Il est facile de voir que FMn vérifie les hypothèses de la question
préliminaire. mn admet ainsi la densité 11R+(x)e−λnx, ce qui signifie
que mn suit une loi exponentielle dont on déterminera de paramètre
nλ.

2. (a) La famille (T = k)k≥1 forme une partition de l’espace. Il s’ensuit

P (G > t) =
+∞∑

k=1

P (G > t, T = k)

=
+∞∑

k=1

P (mT > t, T = k)

=
+∞∑

k=1

P (mk > t, T = k)

(b) mk est fabriqué à partir des Xi, qui sont indépendantes de T , donc
mk est indépendante de T . Il s’ensuit:

P (G > t) =
+∞∑

k=1

P (mk > t, T = k)

=
+∞∑

k=1

P (mk > t)P (T = k)

=
+∞∑

k=1

e−λktp(1− p)k−1.

(c)

P (G > t) = pe−λt
+∞∑

k=1

e−λ(k−1)t(1− p)k−1

= pe−λt
+∞∑

k=1

(e−λt(1− p))k−1

= pe−λt
+∞∑

i=0

(e−λt(1− p))i

=
pe−λt

1− (1− p)e−λt
.
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3. (a) En +∞, on a P (G > t) ∼ pe−λt

1 , qui est évidemment négligeable
devant t.

(b) C’est une conséquence immédiate de la question préliminaire et de la
question précédente.

(c) Comme G a une densité qui est nulle sur R−, on a

EX =
∫ +∞

0

fX(t) dt.

Soit A > 0
∫ A

0

tfX(t) dt = [t(1− FX(t)]A0 +
∫ A

0

(1− FX(t)) dt,

soit ∫ A

0

tfX(t) dt = AP (X > A) +
∫ A

0

P (X > t) dt.

Comme P (X > A) est négligeable devant A, on obtient, en faisant
tendre A vers +∞:

EX

∫ +∞

0

tfX(t) dt =
∫ +∞

0

P (X > t) dt.

(d)

EX =
∫ +∞

0

P (X > t) dt

=
∫ +∞

0

p

λ(1− (1− p)e−λt)
λe−λt dt

=
∫ +∞

0

p

λ(1− (1− p)u)
du

=
−p

λ(1− p)
[ln(1− (1− p)u)]10

=
−p ln p

λ(1− p)

=
−p ln p

1− p

1
λ

(e) En 1 ln p est équivalent à p − 1et p à 1 donc −p ln p
1−p

1
λ ∼ 1

λ . EG

tend donc vers 1
λ , ce qui est l’espérance d’une loi exponentielle de

paramètre λ, ce qui est logique, car si p = 1, alors T = 1 presque
sûrement, donc mT = X1.

FIN DE L’ÉPREUVE

5


