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Le polycopié de cours, les notes manuscrites, et les calculatric es sont autorisés.

Le sujet est constitué de deux exercices et d’un problème indépendants.

Par commodité d’écriture, on écrit parfois P (A,B) à la place de P (A ∩B).
Ces deux expressions sont équivalentes.

Exercice I

Vous disposez d’un dé à six faces. Décrire une expérience aléatoire permettant
d’obtenir une variable aléatoire suivant la loi géométrique de paramètre 1/6.

Exercice II

Une enquête effectuée parmi les nouveaux adhérents du parti socialiste français
a montré que les femmes représentaient 40, 55% des nouveaux adhérents. 20, 4%
des nouvelles militantes socialistes sont enseignantes, tandis que seulement 12, 81%
des nouveaux militants de sexe masculin sont enseignants. Parmi les enseignants
qui militent nouvellement au parti socialiste, quelle est la proportion de femmes ?

Problème

On rappelle les identités bien connues:

n∑

k=1

k =
n(n + 1)

2
et

n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
.

Question préliminaire: Soit n ≥ 1 entier. Pour quelle(s) valeur(s) de A
peut-on construire une variable aléatoire à valeurs dans {1, . . . , n} vérifiant

∀k ∈ {1, . . . , n} P (X = k) = Ak ?

1 Tournez la page S.V.P.



Soient X et Y deux variables aléatoires indépendantes à valeurs dans {1, . . . , n}
vérifiant

∀k ∈ {1, . . . , n} P (X = k) = P (Y = k) = Ak,

où A = 2
n(n+1) . On définit également les variables aléatoires S = X + Y et

Q = X
Y .

1. (a) Quelles valeurs peut prendre a priori la variable aléatoire S ?

(b) Montrer que

∀k ∈ {2, . . . , 2n} P (S = k) = A2

(
k + 1

3

)
.

(c) En déduire l’identité

2n∑

k=2

(
k + 1

3

)
=

(
n + 1

2

)2

.

2. (a) Montrer EX = 2n+1
3 .

(b) Calculer ES.

(c) Que vaut Var S
Var X ?

3. (a) Quelle est la plus petite valeur que peut prendre Q ? La plus grande ?

(b) Montrer

P (Q = 2) =
n∑

k=1

P (X = 2k, Y = k).

(c) On suppose maintenant que n est pair et s’écrit n = 2m. Montrer

P (Q = 2) =
m∑

k=1

P (X = 2k)P (Y = k),

puis

P (Q = 2) =
n + 2

3n(n + 1)
.
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