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Soit Ω = {0, 1}Z2
. On note F = B(Ω) et Pp = Ber(p)⊗Z

2
, et pour i ∈ Z2, on

pose Xi(ω) = ωi.
Enfin, pour tout i ∈ Z2, on pose

Yi =





1 si
∑

j:‖j−i‖∞≤1
Xj ≥ 5

0 sinon
.

On note enfin Qp la loi de (Yi)i∈Z2 sous Pp.
1. Montrer qu’il existe un polynôme P ∈ R[X], tel que

∀p ∈ [0, 1]
1
n

n−1∑
k=0

Yke1 → P (p) Pp p.s..

Préciser la valeur de P (1) et P (0).
2. Soient i et j deux éléments quelconques de Z2.

Montrer que Covar (Yi, Yj) ≥ 0. Que peut-on dire si ‖i− j‖∞ ≥ 3 ?
3. Montrer que le champ (Yx)x∈Z2 est M -dépendant, pour un M que l’on

déterminera.
4. On note CY (x)(ω) l’ensemble des points y tels qu’il existe un chemin x0 =

x, x1, . . . xn = y avec ‖xk − xk+1‖1 = 1 pour tout k ∈ {0, . . . , n − 1} et
Yk(ω) = 1 pour tout k ∈ {0, . . . , n}.
Grâce à un couplage, montrer que la fonction p 7→ Pp(|CY (0)| = +∞) est
croissante.

5. On note I = {∃x ∈ Z2; |CY (x)| = +∞}. Montrer que pour tout p ∈ [0, 1],
Pp(I) ∈ {0; 1}.

6. Montrer qu’il existe des fonctions Φ, Ψ de [0, 1] dans lui-même, avec

∀p ∈ [0, 1] PΦ(p) ¹ Qp ¹ PΨ(p),

lim
p→0

Φ(p) = 0 et lim
p→1

Ψ(p) = 1.

7. Montrer qu’il existe p∗c ∈]0, 1[, avec Pp(I) = 0 pour p < p∗c etPp(I) = 1 pour
p > p∗c .

8. Montrer qu’il existe p0 tel que

∀p ∈ [0, p0] Pp(|CY (0)| > n) = O(2−n).
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