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Soit © = {0,1}%". On note F = B(Q) et P, = Ber(p)®%, et pour i € Z2, on
pose X;(w) = w;.
Enfin, pour tout i € Z2, on pose

1 si X, >5
Y, = mm%mﬁ T

0 sinon

On note enfin Q, la loi de (Y;);cz2 sous Pp.
1. Montrer qu’il existe un polynéme P € R[X], tel que

n—1
Vp € [0,1] 1 > Yke, — P(p) P, ps.
n k=0
Préciser la valeur de P(1) et P(0).
2. Soient i et j deux éléments quelconques de Z2.
Montrer que Covar (Y;,Y;) > 0. Que peut-on dire si [|i — j|joo > 37
3. Montrer que le champ (Y;).ez2 est M-dépendant, pour un M que l'on

déterminera.

4. On note Cy (z)(w) ensemble des points y tels qu’il existe un chemin zy =
T,21,...2n = Yy avec |xp — 2411 = 1 pour tout k € {0,...,n — 1} et
Y (w) = 1 pour tout k € {0,...,n}.

Grace & un couplage, montrer que la fonction p — P,(|Cy (0)] = +00) est
croissante.

5. On note I = {3z € Z?%;|Cy(x)| = +oo}. Montrer que pour tout p € [0, 1],
P,(I) € {0;1}.
6. Montrer qu’il existe des fonctions ®, ¥ de [0, 1] dans lui-méme, avec

Vp € [0,1] Pgpy 2 Qp X Py(y),

lim ®(p) =0 et lim ¥(p) = 1.
p—0 p—1

7. Montrer qu’il existe p} €]0, 1], avec P,(I) = 0 pour p < p} etP,(I) =1 pour
P> P
8. Montrer qu’il existe py tel que
Vp € [0,po] Pp(|Cy(0)] >n) =O@27").

FIN



