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Introduction

Le cours contenu dans le présent polycopié reproduit pour I’essentiel le
contenu de divers enseignements de Licence que j’ai donnés a Orléans, puis a
Nancy. Le cours de ce polycopié a été un des ingrédients de base de 'ouvrage
« De I'Intégration aux Probabilités », que j’ai écrit avec Aline Kurtzmann
et que nous avons publié aux éditions Ellipses. Vous étes invités a vous y
reporter pour compléter votre culture.

A la fin de chaque chapitre, le présent polycopié contient des exercices
qui serviront de base aux travaux dirigés du cours. A la fin du polycopié,
on trouve des indications pour chaque exercice. Il est recommandé de ne s’y
reporter qu’apres avoir un peu cherché.

Certains exercices sont marqués d'une (*) : ce sont les exercices dont une
correction est proposée dans Garet-Kurtzmann. Cela ne veut pas dire que les
autres exercices ne méritent pas votre attention!
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Chapitre 1

Compléments d’analyse

1.1 La droite réelle achevée

On ajoute deux points a R que I'on note —oo et +00. On définit ainsi la
droite réelle achevée R = RU {—o00; +00}. Notons ¢(x) = atan xz pour x réel

D(+00) = 1/2, P(—00) = —m/2.

Homéomorphisme de (R, d) dans [—m/2,7/2]
1.5 .

0.5

0.5 | ]

1t i

-1.5 : '
-10 -9 0 3 10

Pour x,y dans R, on note d(z,y) = |¢(z) — 1 (y)|. Il n’est pas tres difficile
de vérifier que pour tous z,%, z dans R, on a

— d(x,2) < d(z,y) +d(y, z)

— d(z,y) =0 <= z =y

— d(z,y) = d(y, z).
On dit alors que (R, d) est un espace métrique.

Si (2,)n>1 est une suite & valeurs dans R, on dit que (z,,) converge vers
x si d(z, z,) tend vers 0.

On peut remarquer que 1 réalise un homéomorphisme croissant de (R, d)
dans [—m/2,7/2] ('homéomorphisme réciproque est bien siir un prolonge-
ment de la fonction tangente).
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Corollaire 1. De toute suite (a,) a valeurs dans (R, d), on peut extraire une
sous-suite convergente.

Démonstration. (a,) est a valeurs dans l'intervalle compact [—7/2,7/2],

dong, il existe une suite ¢(n) d’entiers strictement croissante et y € [—7/2, 7 /2]

tel que ¥ (ay(m)) tend vers y. Par continuité de ™!, (ay(m)) tend vers ¢~ (y).
0

Pour une suite (x,),>1 & valeurs dans R, on peut vérifier que (z,)n>1
converge vers a dans R si et seulement si elle converge vers a dans R, que
(@n)n>1 converge vers +oo dans R si et seulement si elle tend vers +oo lorsque
n tend vers 'infini, que (z,),>1 converge vers —oo dans R si et seulement si
elle tend vers —oo lorsque n tend vers I'infini.

On peut prolonger la relation d’ordre < sur R, en disant que sont vraies
les relations “—oo < a” “a < +00” pour tout a € R ainsi que “—oo < +00”.

On peut alors énoncer le théoréeme suivant

Théoréme 1. Toute suite monotone de R converge.

Démonstration. On va le prouver pour une suite croissante. Si la suite est
constante égale a —oo, elle converge. Sinon, a partir d’un certain rang, elle est
a valeurs dans | — oo, +00], donc on peut se ramener au cas ou elle est a valeurs
| — 00, +00]. Maintenant, si elle contient +00, elle est constante a partir d'un
certain rang, donc elle converge. On s’est donc finalement ramené au cas ou
la suite est a valeurs réelles : si elle est croissante, majorée, elle converge dans
R, si elle est croissante non majorée, elle converge vers +oo. O]

1.2 Limite supérieure

La limite supérieure d’une suite (a,) & valeurs dans R est

lim a,= lim sup q.
n—+o00 n—+oco k>n
Cette limite existe bien car la suite (v,) définie par v, = illp ap est dé-
>n

croissante. De méme, la limite inférieure d’une suite (a,) a valeurs dans R
est

lim a, = lim inf q.
n—+oo n—+oo k>n
Cette limite existe bien car la suite (w,) définie par w, = inf aj est crois-

k>n
sante.

Lemme 1. Soit (z,,),>1 une suite d valeurs dans R, f une fonction croissante
continue de (R,d) dans (R,d). Alors, sup{f(z;);i > 1} = f(sup{z;;i > n}).

Démonstration. La suite max{z;;1 < ¢ < k} converge vers sup{z;;i > 1}
lorsque k& tend vers l'infini. Donc par continuité f(max{z;;1 < i < k})
converge vers f(sup{z;;i > 1}). Or f(max{z;;1 <i < k})=max{f(z;);1 <
i < k}, qui elleeméme converge vers sup{f(z;);i > 1} lorsque k tend vers
I'infini. Finalement sup{f(z;);i > 1} = f(sup{x;;i > n}). O
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Théoréme 2. lim a, est la plus grande valeur d’adhérence de a, dans R.
n—-+00

Démonstration. Posons! = lim a,, et, comme précédemment v,, = Sup ay.
n——+oo k>n

Commencons par montrer que toute valeur d’adhérence a de (a,,) vérifie a < 1.
Soit a = REIPOO y(ny une valeur d’adhérence. Si a = —oo ou | = 400, il n'y
a rien a montrer. Sinon, prenons € > 0. Il existe N tel que n > N entraine
vp <1 +¢, et donc ay <1+ ¢ pour k > N. Comme ©(n) tend vers linfini, il
existe M tel que n > M entraine p(n) > N. Finalement on a ay,) < l+e¢
pour n > M, d’ott a < [+ ¢. Comme ¢ est quelconque, on a a < [. Reste a
montrer que [ est valeur d’adhérence.

On pose (1) =1, puis
¢(k+1) = inf {" > (k) + 10 (vemy+1) > V(an) > Y(Vpry41) — 1/k}

@(k + 1) est bien défini, car sup,,>, )11 V(@) = V(SUP,> )41 An), d'apres
le lemme (1) est un homéomorphisme, donc est continu). Pour k£ > 1, on a

V(Vpy+1) = Y(agprsr)) = Y (Vpmy+1) — 1/K,

ce qui montre que ¥ (ay)) tend vers 1(1), et donc, comme 1)~ est continue,
que ay(x) tend vers . O

De méme
Théoréme 3. lim a, est la plus petite valeur d’adhérence de a,, dans R.
n—-4o00
Théoreme 4.

lim a, =sup{z € R;{n > 1;a, >z} est infini.}

n—-+o0o

Démonstration. Supposons que z est tel que {n > 1;a, > z} est infini. On
peut donc en extraire une suite p(n) strictement croissante d’entiers telle que

Qyp(n) CONVETZE VErs 2z € R et Ay(n) = T pour tout n : comme 1_1)71}: a,, est
n (0.]

plus grand que toutes les valeurs d’adhérence, on a donc

lim a,>z>x
n—-+o0o

En prenant le sup sur tous les x tels que {n > 1;a,, > x} est infini, on obtient

lim a, >sup{r € R;{n > 1;a, > x} est infini.}

n——+o00

Maintenant raisonnons par ’absurde et supposons que

L= Tlim a,>S=sup{zreR;{n>1;a, >z} est infini.}
n—-+o0o
Soit € > 0 tel que L > S+¢e. Comme L est la plus grande valeur d’adhérence
de ap, L est la limite d’une suite extraite ay(,). Pour n assez grand, on a
ayn) > S +¢€, ce qui entraine que I'ensemble des n tels que a, dépasse S+ ¢
est infini, ce qui contredit la définition de S. O]
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De méme

Théoréme 5.

lim a,=inf{r € R;{n > 1;a, < x} est infini.}

n—-+00

Théoréme 6. Une suite (a,) d valeurs dans R converge si et seulement si

lim a,= lim a,, qui est alors la limite.
n—-+o0 n—-+o00
Démonstration. Si  lim a, = lim a, = 400, alors pour tout = € R,
n—+oo n—-+oo

{n > 1;a, < z} est fini, ce qui montre que a, tend vers +oo. De méme, si

lim a, = Iim a, = —o0, alors pour tout z € R, {n > 1;a, > z} est
n—+00 n—+o0o

fini, ce qui montre que a, tend vers —oo. Passons au cas ou lim a, =
n——+0oo

Iim a, =1 € R. Soit € > 0. Comme

n——+oo
@ a, = sup{r € R;{n > 1;a, > x} est infini.} = € R,
n—+o0
I’ensemble des n tels que a,, > [ + ¢ est fini. De méme, comme
E% a, = inf{z € R;{n > 1;a, < x} est infini.} =1 € R,

I’ensemble des n tels que a,, <[ —¢ est fini. Finalement, ’ensemble des n tels
que |a, — | > € est fini . Ainsi, pour tout £ > 0, a partir d’un certain rang,
la,, — | < € ce qui montrer que a,, tend vers .

Réciproquement, si a, converge vers [ € R, lim a, et lim a, sont
n—-+oo n——+00

égales a [ puisque ce sont des valeurs d’adhérence de (ay,). O
Théoréme 7. Soit (u,), u,, deux suites avec u,, < u,, pour tout n. On a

lim u, < lim u, et lim w, < lim
n—-+o00 n—-+o0o n—-+00 n—-+o0o

Démonstration. Pour tout n, 21113 ur < iup uy, d’ou la premiere inéga-
>n >n

lité en faisant tendre n vers +oo. Pour tout n, inf w, < inf w), d’ou la
k>n k>n

deuxieme inégalité en faisant tendre n vers +oo. n

Corollaire 2. Soit | € R. On suppose que pour tout € > 0,
lim w,>1—¢
n—-+oo

et
lim wu, <l+e.

n——+00

Alors, u,, converge vers .
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Démonstration. En faisant tendre € > 0 dans les deux inégalités, on obtient

lim  w, >1
n—-+00

Iim  u, <I.
n—-+o0o

Finalement

[< lim u, < Iim u, <lI,
n——+0oo n—+00

comme les termes extrémes sont égaux, ceci entraine que tous les termes sont
égaux. O
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1.3 Exercices sur les limites supérieures et in-
férieures

Exercice 1. 1. On pose a, = (—1)"(1 + %). Déterminer lim,, ,, . a, et
mn—>—|—<>oa/n-
2. Soit f une fonction continue croissance de R dans R. Donner une
expression simple lim,,_, . f(ay) et lim, ;o f(an).

3. Méme question lorsque (a,) est remplacée par une suite dont la limite
supérieure est 1 et la limite supérieure est —1
Exercice 2. Soit (a;, i € I) une famille non vide d’éléments de R.
1. Démontrer que inf (a;, i € I) = —sup (—a;, i € I).

2. Soit a un élément de R. Démontrer que
inf (¢ +a;,i€1)=a+inf (a;, i € I)
et en déduire que

sup (¢ +a;, i € I) =a+sup(a;, i € 1).

Exercice 3. Démontrer que lim a, = — lim (—a,), pour toute suite
n—+00 n—+400

(ap)n>1 d’éléments de R.
Exercice 4. Soit (ay)n>1 €t (by)n>1 deux suites dans R.

1. Démontrer que

lim (a,+b,) > lim a,+ lim b,.

n—-+o0o n—-+o0o n—-+o0o

et
lim (a,+0b,) < lim a,+ lim by

n—-+00 n——+0o00 n—+00
Montrer que les inégalités peuvent étre strictes.

2. On suppose que (a,),>1 converge dans R. Démontrer que

lim (a,+b,)= lim a,+ lim b,; lm (a,—b,)= lim a,— lim b,
n——+oo n—+00 n——+oo n——+oo n—+00 n—-+o0o

lim (a,+b,)= lim a,+ lim b,; lim (a,—b,)= lim a,— lim b,
n—r+00 oo n—+00 n—+00 n—+00 n—s—+oo

Exercice 5. Suites sous-additives (lemme de Fekete)

1. Soit k£ un entier naturel non nul fixé, » un entier entre 0 et k — 1.

Montrer que
Ukn+r nug Uy

nk+r — nk+r+nk—l—r'

/7 . - ukn+7‘ u7k
En déduire nEToo Y < 2.
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2. Montrer que  lim “» <infj>; 3.
n—-+o0o

3. Conclure.

. . ||AyH
4. Application 1. Pour A € M, (R), on pose |||All| = , Sun\p{ W =,

converge vers un réel positif.

Montrer que la suite || A™[||*/™

5. Application 2. Soit £ une partie finie de R?. On note A,, I'ensemble
des suites (uq, ... u,) qui vérifient
— Ui € E
— Uiy —u; € E pour tout ¢ € {1,...,n— 1}
— 1 — u; est injective
Montrer que la suite |A,|"/" converge vers un réel positif.

Exercice 6. Soit (ay)n>1 et (b,)n>1 deux suites de réels telles que, pour tout

n>1,a,>0b,>0et lim (a,)"=a>0, lim (b,)" =0b>0.Soient

n—-4o0o n—-4o0o

p,q > 0 avec p+ g = 1. Déterminer lim (pa, + ¢b,)".

n—+oo
Exercice 7. Soit a > 1. Montrer qu’il existe une unique suite (uy)g>1 véri-
fiant pour tout N

k=i

Montrer que lim wu, < {(a)¥* < Tim u,. Montrer que (u,),> converge
n——+0oo n——+o0o -

vers une limite que 'on déterminera (cette derniere question est plutdt un
défi, 'auteur de ces lignes ne connait pas la réponse).

Exercice 8. 1. Pour n > 1, on pose H, = >}, +. Par la méthode de
votre choix, montrer que H, ~ logn.

2. Soit f une fonction continue sur [0, 1].
Pour n > 1, on pose S,, = >"1_; %f(%) Apres avoir justifié I'existence
d'un a > 0 tel que |f(0) — f(k/n)| < e pour 0 < k < an, montrer que

— |S,— f(0)H,
T e AC) LI

n—-+4o0o Hn

Conclure.
n

3. Donner un équivalent de Z —
k=1 S5,

lorsque n tend vers I'infini.
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Chapitre 2

Un peu de théorie de la mesure

La théorie des probabilités décrit les événements comme des sous-ensembles
d’un ensemble (2 représentant tous les résultats possibles a priori — méme s’il
peut s’avérer ensuite que certains n’arrivent jamais. Remarquons bien qu’il
n’est pas possible de modéliser un phénomene aléatoire quelconque si ’on ne
connait pas les résultats possibles a priori.

Soit donc €2 un ensemble. Pour tout A C €2, on note A¢ le complémentaire

de A dans € :
A={zx e Qax ¢ A}

2.1 Tribus

2.1.1 Axiomes de base

On dit qu'une partie F C P(2) est une tribu si elle vérifie les propriétés
suivantes :

1. o eF.
2.VAeF A°eF.

400
3. Pour toute suite (A;);eny d’éléments de F, U A; € F.
i=1

2.1.2 Propriétés

Les propositions suivantes sont alors des conséquences relativement faciles
des axiomes de base :

— Qe A .
o0
— Pour toute suite (A;);eny d’éléments de A, N A; € A.
i=1

n
— Pour toute suite (A;)1<i<, d’éléments de A, U A; € A.
== i=1

n
— Pour toute suite (A;)1<i<, d’éléments de A, N A; € A.
== i=1

Une fois que Q2 et A sont fixés, on appelle événement tout élément de A.

Exercice :

Montrer qu’une partie A C P(£2) est une tribu si elle vérifie les propriétés
suivantes :

1. Qe A.

11
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2. V(A,B)e Ax A (AC B)=> (B\A€ A).
3. V(A,B)e A AUBE€ A.

+oo
4. Pour toute suite (A;);en d’éléments de A deux & deux disjoints, '91 A; €

A

2.1.3 Sous-tribus

Si A est une tribu et que la partie B C A est une tribu, alors on dit que
B est une sous-tribu de A."

2.1.4 Opérations sur les tribus
Intersection de tribus
Soit €2 un ensemble et T un ensemble de tribus sur €2. T" est supposé non

vide.? Il peut étre fini ou infini, voire méme infini non dénombrable. Alors

A= N A est une tribu.
AeT

Démonstration. 11 suffit de vérifier les 3 axiomes de base des tribus.
— VYAeT oA Doncoge N A=A
AeT

— Soit A € A. On doit montrer que A¢ € A. Soit A € T. Comme les
A € A et que A est une tribu, A° € A. Comme ceci est vrai pour tout
AeT , onaAe N A=A

AeT
— Soit (A;)ier une famille dénombrable d’éléments de .A. On doit montrer

que ‘UI A; € A. Soit A € T. Comme les A; sont dans A et que A est
1€

une tribu, ‘UI A; € A. Comme ceci est vrai pour tout A € T, on a
1€

el AeT

Tribu engendrée par une famille de tribus

Soit (A;)ier une famille de tribus sur 2. L’ensemble des tribus contenant
des tribus contenant toutes les 4; est non vide, puisque P(£2) est une telle
tribu. D’apres le résultat énoncé ci-dessus, l'intersection de toutes ces tribus
est une tribu. Par construction, cette tribu est la plus petite tribu contenant
toutes les A;. On la note

N A,

i€l

1. Une erreur classique a ne pas commettre : si B est une sous-tribu de A, que B C A
avec A € A, alors rien ne permet d’affirmer que B € B ni que B € A.
2. T est donc un ensemble d’ensembles d’ensembles, lol.
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Tribu engendrée par une famille d’ensembles

Soit (A;)ie; une famille de parties de €.
Pour tout ¢, la plus petite tribu contenant A; est la tribu A; = (@, A;, A5, Q).
Ainsi, la plus petite tribu contenant les ensembles A; est

G(Ai;ie ])

On note cette tribu o(A4;;i € I).

2.1.5 Tribu borélienne, fonctions mesurables

Soit (A, A) et (B, B) deux espaces mesurés. On dit quune application f
de A dans B est mesurable de (A, A) dans (B, B) si quelque soit X € B, son
image réciproque f~}(X) est dans A.

Commengons par une remarque simple : si f de A dans B est (A4, A) —
(B, B) mesurable et que g de B dans C est (B, B) — (C,C) mesurable, alors
go fest (A, A) —(C,C) mesurable.

Théoréme 8 (Théoreme fondamental de la mesurabilité). Soit f une appli-
cation quelconque d’un ensemble €0 dans un ensemble €Y. Alors

— Pour toute tribu T sur Y, f~(T) est une tribu sur <.

— Pour tout A € P(P(Y)), o(f~1(A)) = f~1(c(A))

Démonstration. — Vérifions que f~1(7) vérifie les axiomes des tribus

—gef Y N caro=fYo)et o €T

— Soit A € f7YT) : il existe B € T avec A = f~YB). A® =
(fY(B))*= f1(B°;or B°€ T donc A¢ € f~1(T)

— Soient (A;);>; des éléments de f~1(T) : pour tout ¢, il existe B; € T
avec A; = f7Y(B;). U A; = Ui (f7Y(By)) = fHU;By); or UiB; € T
donc U;A; € f7H(T)

— A Co(A), donc f7H(A) C f~1(o(A)), puis

a(f7H(A) Ca(f(o(A)) = (a(A)),

ou l'égalité provient de la premiere partie du théoreme. Il reste a
montrer que f(o(A)) C o(f'(A)). Notons

C={X€a(A)f(X)ea(f(A)}

I1 n’est pas difficile de démontrer que C est une tribu (laissé en exer-
cice). Mais C contient A4, donc C est égal a o(A) tout entier, ce qui
montre l'inclusion voulue.

]

Si il n’y a pas d’ambiguité sur la tribu B de I'espace d’arrivée, on note
o(f) la tribu f~Y(B); c’est la plus petite tribu A sur A telle que f soit
une application mesurable de (A,.A) dans (B, B). On dit que c’est la tribu
engendrée par 'application f.

Corollaire 3. Soit (A, A) et (B,B) deuz espaces mesurés. On suppose que
B = o(C). Une application f de A dans B est mesurable de (A, A) dans
(B, B) si quel que soit X € C, son image réciproque f~1(X) est dans A.
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Si A est un ensemble muni d’une topologie, on appelle tribu borélienne
de A et I'on note B(A) la tribu engendrée par les ouverts de A.

Lorsque 'ensemble d’arrivée d’une fonction est (R, B(R)), on parle fré-
quemment d’application mesurable sans préciser I’espace d’arrivée.

Théoréme 9. La tribu borélienne de R? est également la tribu engendrée
par les pavés ouverts de R? dont les cotés ont des extrémités rationnelles ; les
ensembles de la forme [1%,]as, bi[, avec a; < b; et a;,b; dans Q.

Démonstration. Soit T la tribu engendrée par ces pavés : T C B(R?) car ces
pavés sont eux-mémes des ouverts de R?. Pour obtenir 'inclusion réciproque,
il suffit de montrer que chaque ouvert O de R? est dans 7. Soit donc O
un ouvert de R% Soit z € R? : il existe ¢ > 0 tel que z+] — ¢, +¢[?C O.
Comme Q est dense dans R, on peut trouver des rationnels a;(x) et b;(x) avec
r; — e < ai(x) < x; < bi(x) < z; + £. Posons alors U(x) = [1%]as(x), bs(2)[.
On a
O= U U(x)
€0
On peut définir une relation d’équivalence sur O par u ~ v si et seulement
si U(u) = U(v). Evidemment, application U passe au quotient, et 1'on peut
écrire
O= U U(x)
z€O\~

Mais O\ ~ est au plus dénombrable car U est a valeur dans Q%@ qui est

dénombrable. Ainsi, O est réunion dénombrable d’éléments de T, donc O est
dans T. O

On peut en déduire aisément que la tribu borélienne de R est engendrée
par les ensembles de la forme | — oo, a[, ot a décrit R. Ce résultat pourra
éventuellement étre traité en exercice.

Corollaire 4. Soit (A, A) un espace mesuré, f une application de A dans R.

Si pour tout a € R, l’ensemble f~1(]—o0, al) est dans A, alors f est mesurable
de (A, A) dans (R, B(R)).

Corollaire 5. Soit A et B deuz espaces topologiques. Toute application conti-
nue de (A, B(A)) dans (B, B(B)) est mesurable de (A, B(A)) dans (B, B(B)).

On note couramment V(A, A) I'ensemble des applications mesurables de
(A, A) dans (R, B(R)). De méme, on note V(A, A) 'ensemble des applications
mesurables de (A, A) dans (R, B(R)) et V, (A, A) 'ensemble des applications

mesurables de (A, .A) dans (R, B(R;))

Tribu produit

Soit (€2, .A) et (€', A’) deux espaces mesurés. On appelle tribu produit sur
Q x €V la tribu engendrée par les ensembles A x B € A x B. On note A® B
cette tribu.

Commencgons par une remarque simple : si 77 est application de © x
dans  qui a (x,y) € Q x Q' associe m(z,y) = =z, alors m; (la projection
sur la premieére coordonnée) est une application (Q x Q' A ® B) — (2,.A)



2.1. TRIBUS 15

mesurable. En effet, si A € A 7' (4) = AxQ € AxB C A® B. De
méme, si 7y est I'application de € x €' dans ' qui a (z,y) € Q x ' associe
mo(z,y) = y, alors my (la projection sur la deuxiéme coordonnée) est une
application (2 x ', A® B) — (2, B) mesurable.

Théoréeme 10. On suppose que A = o((Ai)icr) et B = o0((Bi)jes). On
suppose en outre qu’il existe I' et J' dénombrables avec I' C I, J C J et tels

que ) = UI A; et QY = UJ B;. Alors A® B = o((A; x Bj)aj)erxs)-
iel’ jeJ’ ’

Démonstration. Notons O la tribu engendrée par les (A4; x B;); j)erx.s. Pour
ACQ,onnote Cy ={B € B:Ax B e O}. Montrons que pour tout i € I,
Ca, = B. Comme Cy4, contient les B; qui engendrent B, il suffit de voir que
Ca, est une tribu. On a A; x @ = & € O. De méme, il est facile de voir que
Ca, est stable par réunion dénombrable (laissé au lecteur). On en déduit que
Q= UjGJ/Bj € CAZ.. Pour B € CA“ ona A; x (Q/\B) = (AlXQ/)\<AXB) S O,
d’ott B¢ € Cyu,. Ca, est donc bien une sous-tribu de B : elle contient les B;
qui engendrent B : c’est B. Notons D = {A € A : C4q = B}. En procédant
comme précédemment, le lecteur montre (laissé en exercice) que D est une
sous-tribu de A. Mais D contient les A;. Comme les A; engendrent A, on a
D = A, ce qui signifie que pour tout (A,B) € Ax B,ona Ax B € O. En
considérant les tribus engendrées, on a A ® B C O. L’inclusion réciproque
est évidente. O

Théoreme 11. Soient f une application de C' dans ), g une application
de C dans Q'.On définit une application F de C' dans Q x Q' par F(z) =
(f(z),g(x)). L'application F est (C,C) — (2 x ', A ® B) mesurable si et
seulement si f est (C,C) — (2, A) mesurable et g (C,C) — (', B) mesurable.

Démonstration. La condition est nécessaire car f = moF et g = mpo F : ainsi
lorsque F est (C,C) — (2 x ', A® B) mesurable, comme 7y est (2 x ', A®
B) — (9, .A) mesurable, f est mesurable comme composée d’applications me-
surables. Pour les mémes raisons, g est mesurable. Supposons maintenant que
fest (C,C)—(£,.A) mesurable et g (C,C)— (€, B) mesurable et intéressons-
nous & F. Soit Ax BEAxB: FY(Ax B)=f"1A)Ng ' (B). Comme f
est g sont mesurables, f~(A) et g~'(B) sont dans C, donc leur intersection
aussi. Ainsi pour tout A x B € Ax B, F~}(A x B) € C. Mais les ensembles
A x B € A x B engendrent A® B, donc F est bien (C,C) — (2 x Q' A® B)
mesurable. 0

Théoréme 12. Soit (21, F1), (2, F2), (3, F3) trois espaces mesurés. L’ap-
plication W : ((Q x Qo) X Q3) — QX (22 x Q3) qui a ((x,y),2) asso-
cie (z,(y,z) est bi-mesurable de ((21 x Qo) x Q3),(F1 @ F2) @ F3) vers
(Q1 X (Qg x Q3), F1 @ (Fo @ F3)). Ainsi les deux tribus (F; @ Fo) @ F3
et F1 ® (Fo ® F3) pewvent s’identifier et on notera simplement Fy @ Fo ® F3
cette tribu sur €y x gy X Q3.

Démonstration. En utilisant le théoreme [, on voit que les ensembles (A; x
Ay) x As et Ay x (Ag x A3) engendrent respectivement les deux tribus consi-
dérées. Le corollaire B permet alors de conclure. O

L’extension au produit d’'un nombre quelconque d’espaces mesurés se fait
alors aisément par récurrence.
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Théoreme 13. Pour tout entier d > 2, on a
B(R?) = B(R)**

Démonstration. 1l suffit de montrer que pour tout d > 1, B(R¥™) = B(RY) ®
B(R), puis de conclure par récurrence. Or, d’apres le théoreme 8 la tribu
B(R?) est la tribu engendrée par les ensembles A de la forme [T%,]a;, b,
avec a; < b; et a;,b; dans Q, tandis que B(R) est la tribu engendrée par les
ensembles B de la forme ]agy1,bai1[, avec agy1 < bgi1 et agy1, bar1 dans Q.
D’apres le théoréme [0, les produits A x B engendrent la tribu B(R?) @ B(R) ;
mais ces ensembles sont exactement les ensembles de la forme [1%4!]a;, by,
avec a; < b; et a;,b; dans Q, qui, toujours d’apres le théoreme O engendrent
la tribu B(RH1). O

Théoréme 14. Soit f, g deux applications mesurables de (C,C) dans (R, B(R))
et G une application mesurable de (R? B(R?)) dans (R, B(R)). Alors H dé-
finie par H(z) = G(f(x),g(x)) est mesurable de (C,C) dans (R, B(R)).

En particulier les choix G(z,y) = v+y et G(x,y) = xy nous disent que f+g
et fg sont mesurables de (C,C) dans (R, B(R)).

Démonstration. Avec les notations du Théoreme [, H = G o F. Pour le cas
particulier, notons que comme H est une application continue de R? dans R,
c’est une application (R?, B(R?)) — (R, B(R)) mesurable, ou de maniére équi-
valente (R?, B(R) ® B(R)) — (R, B(R)) mesurable les applications continues
sont mesurables par rapport aux tribus boréliennes associées aux topologies
correspondantes. O

2.2 Mesures

2.2.1 Algebres

On dit qu’une partie A C P(€2) est une algebre si elle vérifie les propriétés
suivantes :

1. ge A
2.VAe A Ac A
3. Pour tous A et Bdans A, AUB e A

Remarque : il n’est pas difficile de démontrer qu’'une algebre est stable
par union finie ou intersection finie.

On voit tout de suite que la différence avec la définition d’une tribu est
que la stabilité par réunion dénombrable n’est pas requise. En fait, les tribus
sont parfois appelés g-algebres, la lettre o étant traditionnellement attachée
aux propriétés liées a des familles dénombrables.

Remarque : en anglais

— algebre se dit “field”, plus rarement algebra

— tribu (o-algebre) se dit “o-field”.
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2.2.2 Espace mesuré

Soit A une algebre. On appelle mesure sur (£2,.4) toute application
p: A — [0, +o0]

vérifiant les propriétés suivantes :
1. u(@)=0.
2. Pour toute suite (4;);en d’éléments de A deux a deux disjoints et telle

+oo
que 'U1 A; € A, alors
=

+o0 +o0
pl YA = 2 u(d).

Dans le cas ou A est une tribu, le triplet (£2,.4, 1) est appelé espace
mesuré.

Etant donné un espace mesuré (2, F), on dira qu’une propriété P(z) est
vraie p-presque partout ou encore pour p-presque tout x si il existe A € F
tel que

Vo € QO\A; P(z)

et u(A) =0.

Pour A et B dans F, on dira parfois que A et B sont égaux u presque
partout pour signifier que u(AAB) = 0.

Si u(Q2) < 400, on dit p est une mesure finie. Si il existe une suite A,

+oo
d’éléments de A avec p(A,) < +oo pour tout n et que 2 = ‘91 A;, on dit

que p est o-finie.
Les propositions suivantes sont alors des conséquences relativement faciles
des définitions :

1. Pour toute suite (A;)1<i<n d’éléments de A deux & deux disjoints,
a0 4)= % (4,

2.VABeA (ANB=g)= (u(AUB) = u(A) + u(B))

3. V(A,E) € A> avec A C F et u(A) < +ooona pu(E\A) = u(E) —

p(A)

VA, Be A u(ANB) < +o0 = pu(AUB) = pu(A)+u(B)—pu(ANB)

VA, Be A u(AUB) < u(A)+ u(B)

VA, Be A (ACB)= (uA) < u(B))

VA, Be A uw(ANB) <min(u(A), u(B))

VA, Be A u(AUB) > max(u(A), u(B))

S S A

+o00
9. Pour toute suite (4;);>1 d’éléments de A telle que ‘Ul A, e A,

400 +oo
pl Y A) s B p(Ay).
10. Si (A;)ien est une suite croissante d’événements de A (c’est a dire
“+oo
que Vn € N A, C A,41)) telle que A = _U1 A; € A, alors la suite

(11(A}))nen est monotone, croissante, et converge vers pi(A).



18

CHAPITRE 2. UN PEU DE THEORIE DE LA MESURE

11. Si (A;)ien est une suite décroissante d’événements (c’est a dire que
+o0

VneN A, CA,)), avee u(A;) < oo et que A = '01 A; € A,
1=

alors la suite (u(A;))nen est monotone, décroissante, et converge vers

1(A).

Démonstration. 1. Il suffit de poser A; = @ pour ¢ > n+1 et d’appliquer

I’axiome 2.
2. Il suffit d’appliquer la propriété 1 avec n =2, Ay = A et Ay =

3. Il suffit d’appliquer la propriété 2 avec B = E\ A : A et B sont disjoints
donc pi(A) + p(A%) = p(AU A%) = p(E) .

4. Les ensembles A\B, B\A et AN B sont disjoints et leur réunion est
AU B, donc 'aprés la propriété 1, on a

WAUB) = p(A\B)+ pu(B\A) + (AN B)

pAUB) = (uA\B) + (AN B) + (u(B\A) + p(AN B)) — u(AN B)

1(A) + p(B) — u(An B)
car A\B AN B sont disjoints, de réunion A, tandis que B\A et ANB
sont disjoints, de réunion B.

5. Il suffit d’appliquer la relation 4 en remarquant que u(AN B) > 0

6. Si A C B, on a B est la réunion disjointe de A et de B\A. Donc
u(B) = n(A) + p(B\A) = p(A).

7. (AN B) C A, donc d’apres la propriété 6 u(AN B) < u(A). De méme

u(AN B) < p(B). Finalement u(AN B) < mm( (A), u(B)).

U

);
8. AC (AU B), donc d’apres la propriété 6 u(A) < u(AU B). De méme
) < il

u(B) < p(AU B). Finalement max(u(A), u(B) gﬂ AU B).

9. Posons By = A et, pour toutn > 2 B,, = A,\( U B;). Par construc-

tion, les (B )r>1 sont deux a deux disjoints. De lus on peut montrer
) > )
par récurrence sur n que

wn>1 U 4= U B,

On en déduit

U A'L: U B'L
i=1 i=
Donc
+oo +oo
11 zL:Jl A) = lgl By)
“+o00
= Zgl N(Bz)
400
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10. Comme A,, C A,41, on a p(A4,) < u(Ani1), done la suite est crois-
sante. Comme on a pour tout n : A, C A, la suite (u(A;,))n>1 est ma-
jorée par pu(A). Posons By = A et, pour tout n > 2 B, = A,\A4,_1.

On a:
et

+

i=1 i=1
Alinsi,

+oo

= X 1(B;)

= lim X w(B;)
n—+oo 1=1

= lim u( U B)

n——+o0o =1
= lim M(An)
n—-+o0o

11. On applique le résultat précédent a la suite croissante (A’,),>1 définie
par A = A1\ A,.
O

2.2.3 Masse de Dirac

Soit (€2, F) un espace et une tribu. Soit x € . On appelle mesure de
Dirac en = et on note ¢, la mesure définie par

VAEF 6,(A) =14(x).

Vérifions brievement que 9, est une mesure : il est évident que ¢, est a valeurs
dans [0, +00]. Maintenant, soit (A, ),>1 une famille d’éléments de F deux a
deux disjoints. Si x n’est dans aucun des A;, il n’est pas dans leur réunion,
et donc on a

i>1
Si z est dans un des A;, il est dans un unique A;, puisque les A; sont deux a

deux disjoints ; ainsi

i>1
2.2.4 Mesure de comptage

Soit (£, F) un espace et une tribu. On appelle mesure de comptage sur
) la mesure C' définie par
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VAeF C(A) =4

ou |A| est le cardinal de A (le nombre d’éléments de A si A est fini, +o0
sinon). Vérifions brievement que C' est une mesure : il est évident que C' est a
valeurs dans [0, +00]. Maintenant, soit (A,),>1 une famille d’éléments de F
deux a deux disjoints. Si un des A; est infini, il est évident que 3,5, C(4;) =
+00 = C(U;>14;). De méme si il y a une infinité de A; non vides U;>1 A; est
infini et la somme ;51 C(A;) a une infinité de termes qui dépasse 1 donc
encore une fois 3,5, C(4;) = +00 = C(U;>14;). Reste le cas ou aucun des
A; n’est infini et ou seul un nombre fini est non-vide : ¢’est donc une réunion
finie d’ensemble finis et alors la formule recherchée est bien connue.

2.2.5 Opération simples

La somme de deux mesures est une mesure ; en multipliant une mesure
par une constante positive, on a encore une mesure.
La preuve est simple et est laissée en exercice.

2.2.6 Extension d’une mesure — mesure de Lebesgue

On va présenter maintenant un théoreme abstrait qui sera peu employé
dans ce cours, mais est important pour fonder les bases de la théorie de
I'intégration de Lebesgue.

Théoréme 15 (Théoréme de prolongement de Hahn). Etant donnée une
algebre F de parties d’un ensemble ) et une mesure p sur F, la fonction
d’ensemble i définie sur la tribu o(F) de parties de Q engendrée par F par

AA) = inf({ 3 p(An); (Auzi € F et Ac T A

est une mesure sur o(JF) qui prolonge p. Ce prolongement est unique si ju est
une mesure est o-finie.

La preuve de ce théoreme est basée sur le concept de mesure extérieure,
développé notamment par Carathéodory.

Ce théoreme difficile est admis.

Le théoreme suivant ne sera pas utilisé dans ce cours, mais mérite d’étre
mentionné car il est tres pratique dans certains problemes théoriques que le
lecteur pourra rencontrer dans le futur.

Théoréme 16. Si u est une mesure finie sur F et A une algébre engendrant
F, alors pour tout A € F et tout e > 0, il existe A" € A tel que p(AAA") < e.

Démonstration. 11 suffit de montrer que I'ensemble 7 des A € F tels que
pour tout € > 0, il existe A’ € A tel que u(AAA’) < ¢, est une tribu. Comme
AAA = A°AA°, la stabilité par passage au complémentaire est évidente.
Soit (A;,)n>1 une suite d’éléments de 7. On pose A = U,,>14,, et on se donne
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e > 0. Pour tout n, soit A}, € A tel que pu(A,AA)) < 5. Soit n tel que
1A\ kQI Ay) <e/2.0na

n n n n n g
U N < U U ! U < — <
pAA U 4 < p(AA U A +u( U AN U Ay < e/2+k§ ST <

m
Passons au théoreme d’existence de la mesure de Lebesgue.

Théoréme 17. II existe une unique mesure A sur (R, B(R)) telle que quels
que soient les réels a et b avec a < b, on ait

— M] —00,a]) = A(] — 00, a]) = A([b, +00]) = A(]b, +00]) = +00

— A, 0]) = Alla, b) = A([a, b]) = A(la, b]) = b — a.

— M{a}) =0.

Cette mesure est appelée mesure de Lebesque sur R.

Démonstration. Idée de preuve : on définit A pour les réunions dénombrables
d’intervalles (bornés ou pas), puis on applique le théoreme de prolongement
de Hahn. O

Notons que comme un ensemble dénombrable est réunion dénombrable
de singletons, tout ensemble dénombrable est de mesure de Lebesgue nulle.
Par exemple, I'ensemble des rationnels est de mesure nulle.

2.2.7 Mesure image

Soit (£2, F, i) un espace mesuré, f une application de Q2 dans €. On pose
G(F. f)={AeP(); f1(A) € F}.

On appelle mesure image de p par f et on note py la mesure définie sur
o(F, f) par

pp(A) = u(f~(A)).
Si f est une application qui est mesurable comme application de (€2, F) dans
(€2,G), py est évidemment définie sur G, puisque G est une sous-tribu de

o(F, f)-

2.3 Convergence et mesurabilité

2.3.1 Tribu borélienne de R

Rappelons briévement quelques notions de base de la topologie de R. On
aR=RU{+o00}U{—00}. On définit o sur [—7/2,7/2], par p(z) = tan x si
x €| —m/2,m/2],

On définit une métrique sur R par d(z,y) = |¢~ () — ¢~ (y)]. Une boule
ouverte pour d n’est rien d’autre que l'image par ¢ d’une boule ouverte de
[—m/2,7/2], ainsi la tribu borélienne sur R n’est autre que la tribu image
de la tribu borélienne de [—7/2,7/2] par Uapplication ¢. En particulier, il
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s’ensuit que la tribu borélienne de R est engendrée par les ensembles de la
forme |z, +-00]. D’autre part, les boréliens de R ainsi que les singletons {+oo}
et {—oo} sont dans la tribu borélienne de R.

2.3.2 Importance de la séparabilité de R

R est un espace séparable, c’est a dire qu’il possede (au moins) une partie
dénombrable dense : en effet, on sait bien que I’ensemble Q des rationnels
est dense dans R Cette propriété est tres souvent utilisée en théorie de la
mesure, par exemple dans le résultat suivant, qui met en oeuvre une technique
classique a connaitre.

Théoréme 18. Soit f, g deur applications mesurables de (Q, F) dans (R, B(R)).
Alors

{f>9} ={weflw)>gw}erF

Démonstration.
{f>9t = U A{f>qg>g}
q€Q
= U {f>q¢gn{g>g}
qeQ

- qg(@ f_l(]QJ —i—oo])ﬂg_l([—oo,q[)

Comme f est mesurable de (2, F) dans (R, B(R)) et que |q, +o0] € B(R),
fY(]q, +o0]) € F. De méme g~*([—o0,q|]) € F, leur intersection est encore
dans F, et une union dénombrable d’éléments de F est dans F, ce qui donne
le résultat voulu. O

2.3.3 Convergence et mesurabilité

Théoréme 19. Soit (f,)n>1 une suite d’applications mesurables de (€2, F)
dans (R, B(R)). Alors les applications suivantes et les événements suivants
sont mesurables :

1. sup f,

n>1

2. inf f,

n>1

3. lim fa

n—-+o0o

lim f,

n—-+o0o

SR

. { fn converge vers + oo}

D

. { fn converge vers — oo}

~

. {fn converge dans R}

o

. {fn converge dans R}
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Démonstration. 1. Posons f = Slilf fn- On a
n>

Sz, 4o0c]) = U f (Ja, +00]),

n>1

ou, en adoptant le formalisme probabiliste :

{f>ak= U {fu>a)

2. On peut simplement remarquer que inf f, = — Slill) (—fn), et appli-
n>1 nz

quer le point précédent, sachant que 'opposé d'une fonction mesurable
est mesurable (par exemple car —f = (z +— —x)o f .

3. lim f, = inf g,, avec g, = sup f;. La mesurabilité des (g,)
n——+o0o n>1 k>n
provient du point 1; on applique alors le point 2.

4. Preuve analogue, ou lim f,=— lim (—f.)
n—-+00 n—+00

5. {fn converge vers + oo} est l'image réciproque de {400} par l'appli-

cation mesurable lim f,.
n——+00

6. {f. converge vers — oo} est l'image réciproque de {—oo} par 1'appli-

cation mesurable lim f,.
n—+00

7. On a vu dans les points 3. et 4. que les fonctions  lim f,et lim f,
n——+o00 n—+o00

étaient (02, F) — (R, B(R)) mesurables.

Or {f, converge dans R} est le complémentairede { lim f, < Tim f.}

n—+00 n—-+o00
qui est dans F d’apres le paragraphe sur la séparabilité.

8. C’est une conséquence immédiate des trois points précédents.
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2.4 Exercices de théorie de la mesure

Exercice 9. Soit © = {1,2,3,4,5,6}. Pour z € , on pose f(x) =3 et
9(x) =l xy. Décrire o(f), o(g), puis o(f, g).

Exercice 10. En vous inspirant de ’exercice précédent, montrer que la tribu
engendrée par une fonction d'un ensemble F vers un ensemble fini F' est
en bijection avec la tribu de toutes les parties d'un (éventuellement autre)
ensemble fini.

Exercice 11. 1. Soient f et g deux applications quelconques de €2 dans
R qui vérifient
VeeR {f<uz}={g<z}

Montrer que f = g sur 2. Que peut-on dire si la condition ci-dessus
n’est vérifiée que pour tout x rationnel ?

2. On suppose maintenant que f et g sont mesurables de 1’espace mesuré
(Q,F) dans (R,B(R)). Montrer que si pour tout z réel {f < z} =
{g < z} p-presque partout, alors f = g p-presque partout.

Exercice 12. On pose
2n
1

fn = >  —Ok.

Dites briévement pourquoi i, est une mesure et calculer u5([0,7]). Etudier
le comportement asymptotique de ,([n, +00[).

Exercice 13. Soit a un réel et 7, : R — R la translation définie par 7,(x) =
x + a. Montrer que la famille 4, = {A € P(R);7,(A) = A} des parties
invariantes par 7, est une tribu sur R.

Plus généralement, si f est une application de R dans R, donner une condition
suffisante sur f pour que la famille 4 = {A € P(R); f(A) = A} soit une
tribu.

Exercice 14. Soient A et B deux tribus sur un ensemble 2. Montrer que la
tribu engendrée par A et B coincide avec la tribu engendrée par les ensembles

de la forme AN B, ou (A, B) décrit A x B.

Exercice 15. On rappelle que la tribu borélienne de R est la tribu engen-
drée par les ensembles de la forme ]a, b[; (a,b)* € Q. Montrer que la tribu
borélienne est également la tribu engendrée par les familles

— C= {] —OO,CL[;CL € Q}

— D={]-o0,a;acQ}.

— &= {[aab[; (a7b>2 € Q}

— F ={la,b}; (a, b)2 € Q}.

Exercice 16. Pour n entier strictement positif, on note A,, = nN*. Notons
P I'ensemble des nombres premiers positifs et 7 la sous-tribu de (N*, B(N*))
engendrée par les (A,)pep.

1. Montrer que ’ensemble C' des entiers qui sont premiers avec 2000 est
T-mesurable.
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2. Montrer que I'ensemble B = {2*: k € N*} des puissances de deux est
T-mesurable.

Exercice 17. Soit (F, d) un espace métrique. Montrer que la tribu borélienne
B(E) engendrée par les ouverts de E est aussi la plus petite tribu rendant
mesurables toutes les applications continues de (£, d) dans R (muni de la
tribu borélienne et de la topologie usuelle).

Exercice 18. Lemme de Doob

Soit X et Y deux applications mesurables de (£2,.4) dans (R, B(R)). On veut
montrer que Y est o (X )-mesurable si et seulement si il existe une application
mesurable f de (R, B(R)) dans lui-méme telle que Y = f o X.

1. Traiter le sens “facile” : si Y = f o X, alors ...
2. Traiter la réciproque, lorsque Y est une fonction simple (étagée).

3. Passer au cas général.

Exercice 19. Support d’une mesure sur R?

1. Soit p une mesure sur (R, B(R%)). On appelle support de ;1 'ensemble
des € R? tels que tout ouvert contenant z est de mesure positive.
Montrer que le support de u est fermé.

2. Soit O un ouvert de R?. Montrer qu’il existe un ensemble dénombrable
D, des familles (2,,)nep; (Tn)nep avec z, € Q¥ et 1, € Qf et O =

UBnan-
neD (337")

3. Soit p une mesure sur (R B(R?)). Montrer qu’il existe un ouvert
O maximal (pour I'inclusion) de mesure nulle, puis que R\O est le
support de pu.

On notera que la définition donnée a la premiere question est encore valide
dans tout espace topologique muni de sa tribu borélienne. La caractérisation
donnée dans la derniére question est encore vraie si l’espace est a base dé-
nombrable (c’est le cas, comme ici, des espaces métriques séparables (avec
une partie dénombrable dense)) ou si p est une mesure finie.



26

CHAPITRE 2. UN PEU DE THEORIE DE LA MESURE



Chapitre 3

Espace probabilisé

Voyons maintenant la définition d’une probabilité sur (€2, F).

3.1 Espace probabilisé

On appelle

— probabilité

— ou mesure de probabilité
— ou loi

sur (2, F) toute application

P: F —10,1]

vérifiant les propriétés suivantes :
1. P(@) =0, P(Q) = 1.
2. Pour toute suite (A;);eny d’éléments de F deux a deux disjoints,

400 00
P( U A)= ¥ P(4).
1= =1

Alors, le triplet (€2, F,P) est appelé espace probabilisé.

On remarque qu'un espace probabilisé est tres exactement un espace me-
suré associé a une mesure positive de masse totale 1.
Remarque sur le vocabulaire : l'image P(A) d’'un événemement A par
Iapplication P est appelée probabilité de cet événement. Ainsi le mot “pro-
babilité” peut-il désigner a la fois une application et la valeur de cette appli-
cation en un point. Le contexte doit permettre de lever toute ambiguité.

Les propositions suivantes sont alors des conséquences relativement faciles
des définitions :

1. Pour toute suite (A;)1<i<, d’éléments de F deux a deux disjoints,
(0 4= é P(A,).

VA, BeF (ANB=0)= (P(AUB)=P(A)+P(B))

VAe F P(A°) =1-P(A)
VA,Be F P(AUB)=P(A)
VA, Be F P(AUB)<P(A)
VA, Be F (ACB)= (P(A)

+P(B)-P(ANB)
+ P(B)
<

P(B))

SEEN AN

27
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7. VA, Be F P(ANB) <min(P(A),P(B))
8. VA,Be F P(AUB) > max(P(A),P(B))
9. Pour toute suite (4;);>1 d’éléments de F,

+00 +00
P(U A4)< 5 P(4).
1= =1

10. Si (4;)sen est une suite croissante d’événements
(c'est a dire que Vn e N A, C A, 11))

+oo
et que 'on pose A = U A, alors la suite (P(A,,))nen est monotone,

i=1

croissante, et converge vers P(A).
11. Si (A;)ien est une suite décroissante d’événements
(c’est a dire que Vn e N A, C A,))

+oo
et que 'on pose A = N A;, alors la suite (P(A,,))nen est monotone,

=1

décroissante, et converge vers P(A).

Démonstration. 11 suffit de particuliser aux cas d’'une mesure de masse 1 les
propriétés des mesures démontrées au chapitre précédent. O

3.2 Partitions et probabilités

Le théoreme tres simple qui suit est tres fréquemment utilisé. Il traduit
le fait que pour calculer une probabilité, il faut parfois diviser les cas.

Théoréme 20. Soit (Q, F,P) un espace probabilisé. Soit I un ensemble d’in-
dex fini ou dénombrable et (£2;);cr une partition de Q. Alors on a

VAe F P(A) =) PANQ).
iel
Démonstration. Comme la famille (€2;);c; une partition de 2, la famille (AN
Q;)ier est une partition de A. A est donc réunion disjointe des (A N €2;);er,

donc P(A) =3 ,c; P(ANK). O

3.3 Probabilité conditionnelle

Soit (€2, F,P) un espace de probabilité et B un événement observable
de probabilité non nulle. On appelle probabilité conditionnelle sachant B
I’application

P(|B):F — R
A o P(A|B):W

P(A|B) se lit "Probabilité de A sachant B".
On a évidemment

P(AN B) = P(B)P(A|B). (3.1)

Remarque : L’application "probabilité conditionnelle" est une probabi-
lité. Elle vérifie donc toutes les propriétés énoncées précédemment.
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3.3.1 Conditionnements en chaine

Si A, B sont deux événements observables avec A C B et P(B) # 0, la
formule (B) devient

P(A) = P(B)P(A|B). (3.2)
On a la généralisation suivante :

Théoreme 21. Soient n > 2 et Fy, ..., E, des événements observables vé-
rifiant

E,CE,,C---CE

et P(E,_1) > 0. Alors on a
P(E,) =P(E,|E, 1)P(E, 1|E,2)...P(Ey)|E)P(E,)

Démonstration. La formule se montre par récurrence sur n. Pour n = 2,
c’est une conséquence immédiate de (B2). Pour n > 2, on applique d’abord
la formule pour n = 2 aux événements FE, et E,_; :

P(E,) =P(E,|E,—1)P(E,_1),
puis on applique la propriété de récurrence au rang n — 1. O

Exemple : (d’apreés André Franquin) Chez les papous, il y a les papous
a poux et les papous pas a poux. La probabilité pour quun papou ait des
poux vaut 0.1. De plus, chez les papous, il y a les papous papas et les papous
pas papas. La probabilité pour qu'un papou a poux soit papa vaut 0.6. Or,
chez les poux, il y a les poux papas et les poux pas papas : la probabilité
pour qu’'un papou a poux possede au moins un pou papa est de 0.8.

Question : on tire au hasard un papou. Quelle est la probabilité pour que
ce soit un papa papou a poux papa? Réponse : 0.8 x 0.6 x 0.1 = 0.048.

Ce théoreme est parfois énoncé sous la forme plus compliquée — mais
équivalente — suivante.

Théoréme 22. Soient n > 2 et Ay, ..., A, des événements observables avec

P(AiNAsN---NA,1)>0. Alors

n—1

P(AiNAN---NA,) = ( kljl P(ANAsN- - NA 1 |A1 N AN N AR))P(A)

i
Démonstration. 11 suffit de poser, pour 1 < i < n, E; = kﬂ A, et d’appli-
=1

quer le théoreme précédent. n

3.3.2 Conditionnement par tous les cas possibles

Ceci est I'expression en termes de probabilités conditionnelles du principe
de partition.
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Théoréeme 23. Soit (2, F,P) un espace probabilisé. Soit I un ensemble d’in-
dex fini ou dénombrable et (£2;);er une partition de Q. Alors on a

VAeF P(A) =Y P(A|Q)P(),

ieJ

ou J ={ie,P(Q;) > 0}.
Démonstration. D’apres le théoreme PO, on a

P(4) = > PANQ)
= Y PANQ)+ > P(ANY)
ieJ i€I\J
= Y P(ANQ)
ieJ

= > P(A|Q)P()

ieJ

3.3.3 Formule de Bayes

Théoréme 24. Soit (Q, F,P) un espace probabilisé. Soit I un ensemble d’in-
dex fini ou dénombrable et (£2;);c; une partition de S telle que pour touti € I,
P(€;) soit non nul. Soit A un élément de probabilité non nulle.

Alors on a, pour tout j € I, la formule

P(AJQ;)P()

P(4]A) = )
S B(AI)R(0)
Démonstration.
PO = “ 5o
_ P(AIQ)P(y)
B P(A)

et on applique le théoreme précédent.

Exemple :

— 607% des étudiants qui vont en T.D. obtiennent I’examen.

— 10% des étudiants qui ne vont pas en T.D. obtiennent I'’examen.

— 70% des étudiants vont en T.D.
Quelle proportion des lauréats a séché les cours? On note A I'événement
"étre assidu en cours". On a P(A) = 0.7, et donc P(A¢) = 0.3. On note L
I'événement "obtenir 'examen' : on a P(L|A°) = 0.1 et P(L|A) = 0.6. On a
alors

P(L|A%)P(A°) 0.1 x0.3 3 1

]P) AC L — = = — = —,
(A1L) P(L|A°)P(A) + P(LIAP(A) 0.1 x03+06x07 45 15
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3.4 Indépendance

3.4.1 Evénements indépendants

On dit que deux événements observables A et B sont indépendants si on

P(AN B) = P(A)P(B).

Soit (A;);eq une partie d’éléments de F indexés par un ensemble G. On
dit que les événements constituant la famille (A;);cq sont globalement indé-
pendants si 'on a pour tout ensemble fini I C G :

P( N A) = TI P(A4)).

el iel

3.4.2 'Tribus indépendantes

Soit (€2, F,P) un espace probabilisé; A et B deux sous-tribus de F. On
dit que les tribus A et B sont indépendantes sous P si

VAe A VBeB P(ANB)=P(A)P(B).

Plus généralement, si (A;);cr est une famille de sous-tribus de F, on dit
que cette famille est indépendante sous P si pour tout ensemble fini J C I,
on a

V(Ai)iese I1L A P( N A) = TI P(A4).
ieJ ieJ ieJ
Remarque : Si ] est fini et que (A;);er est une famille de sous-tribus de
F, cette famille est indépendante sous P si et seulement si on a

V(Adier€ 11 A P( N A;) = I P(A).
el il el

I1 suffit en effet de poser A; = €2 pour i € I\ J pour exprimer une intersection
indexée par J en une intersection indexée par I.

Exercice : Soient A, B € F. Montrer que A est indépendant de B si et
seulement si la tribu o(A) est indépendante de la tribu o(B).

Remarque utile : Si les tribus A et B sont indépendantes sous P, que
A’ est une sous-tribu de A et B’ est une sous-tribu de B, alors les tribus A’
et B’ sont indépendantes sous P.

3.4.3 Indépendance et tribus engendrées

Définition On dit qu’une famille C de parties de €2 est un m-systeme si
V(A,B)eCxC AnBeC.

On donne maintenant un résultat général de théorie de la mesure tres
utile. Sa preuve, basée sur le théoréme A — 7 de Dynkin, est admise ici.®

1. Le lecteur intéressé pourra se référer a la derniere section de ce chapitre ainsi qu’a la
section 3.3 de I'ouvrage de Patrick Billingsley : Probability and measure, précisément aux
théoremes 3.2 et 3.3.
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Proposition 1 (Critere d’identitification d’une probabilité). Soit P et @
deuz probabilités sur l'espace mesuré (2, F). On suppose qu’il existe un -
systeme C qui engendre F (o(C) = F) et sur lequels P et Q) coincident, c’est
a dire que

VAeC P(A)=Q(A).
Alors P = Q.

Théoréme 25. Soit C et D deux familles de parties mesurables de (§2, F).
On suppose que C et D sont des m-systémes et que pour tout (A, B) € C x D,

on a P(AN B) = P(A)P(B). Alors, les tribus A = o(C) et B = o(D) sont

indépendantes.

Démonstration. Pour A € A, on pose Ty = {B € B,P(ANB) =P(A)P(B)}.
Regardons d’abord le cas ou A € C. Si P(A) = 0, alors A est indépendant

de tout, donc T4 = B. Si P(A) # 0, on peut définir sur B la probabilité
conditionnelle P4 par

P(AN B)

VB EB Pu(B)= B

Les probabilités P et P4 coincident sur D. Comme D est un m-systeme qui
engendre B, P et P, coincident sur B. On en déduit que lorsque A € C, on

aTs=B.
On a donc montré que si C et D sont des w-systemes, alors
V(A,B)eCxD P(ANB)=P(AP(B)
— V(A,B)eCxo(D) P(ANnB)=P(A)P(B).
Mais, B = (D) est lui-méme un 7-systeme. Le résultat que l'on vient de

démontrer s’applique cette fois avec (B,C) a la place de (C, D), et on obtient
que

V(A,B) €CxD P(AN B) =P(A)P(B)
— V(A,B) € 0(C) x o(D) P(AN B) = P(A)P(B),

ce qui était notre objectif

Théoréme 26. Les deux propriétés suivantes sont équivalentes :
1. Les tribus (A;)ier sont indépendantes
2. Pour tout j € I, la tribu A; est indépendante de la tribu o(A;;i €

NG

Démonstration. — Preuve de 1 = 2 : Soit j € [. On considere le
m-systeme C défini par

C= U { N AsVeeF A,€A,}.
FCI\{j} = =z€F
(Ici, FF C I signifie que F' est une partie finie de I.) Il est facile de
voir que C est un m-systeme qui engendre o(A;;i € I\{j}) et que
V(A,B) € A; xC P(ANB) =P(A)P(B). Le théoréme 23 permet de

conclure.



3.5. THEOREME X\ — n DE DYNKIN (*) 33

— Preuve de 2 =1
On montre par récurrence sur n la proposition P,

Po: |I|=n=V I A, € Il A, P( N A,)= TI P(A,).
zel zel xzel zel
Il est clair que Py et Py sont vraies. Montrons P, = P, 1. Soit [ un
ensemble de cardinal n + 1. On peut écrire I = J U {zo} avec |J| = n. Soit
Ei= 11 A, € 1l A,. Ona Ey = A,, N E,, avec By = ﬂJ A,. Comme
S

zel zel
A,y € Ay et By € o(Aii € I\{zo}), 'hypothese 2 implique P(E;) =
P(A,,)P(E,). Mais d’apres P, on a

zeJ zed
d’ou
P(Er) = P(Aq)P(E) = 11 P(As).
ce qui acheve la preuve. O

3.5 Théoréme \ — 7 de Dynkin (*)

Cette section peut étre omise en premiere lecture.

On dit que £ C P(2) est un A-systeme si on a
— el
— VA BelL ACB= B\AecCL

— Pour toute suite croissante (A4,),>1 d’éléments de L, L>J1 A, el
n

On peut déja remarquer que si A C P(£2) est a la fois un )x—gystéme et un
m-systeme, alors A est une tribu. En effet, soit (A,),>1 une suite d’éléments

n n
de A. Si on pose A, = kU A, = Q\( kﬁ Af), on a A, € A (on utilise la
—1 =1
stabilité par intersection finie et par complémentation). Donc, comme A C
P(2) est un A-systeme A = U A, = U A € A d’apres le troisiéme
n>1

n>1
axiome d'un A-systeme.

Théoréme 27 (Théoreme A\ — m). Si P est un w-systéme et L est un \-
systéme, alors P C L entraine o(P) C L.

Démonstration. Voir par exemple Billingsley, théoreme 3.2 [
Preuve de la proposition 1 :

Démonstration. Si on regarde I’ensemble £ des parties de A de la tribu en-
gendrée par le m-systeme qui sont telles que P(A) = Q(A), il n’est pas difficile
(en utilisant notamment le théoreme de continuité séquentielle croissante) de
voir que £ est un A-systeme; il suffit alors d’appliquer le théoreme A — 7. [
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3.6 Premiers exercices de probabilités

Exercice 20. (*)Soient I un ensemble fini, (A;);e; des événements indépen-
dants. Montrer que les événements (A¢);c; sont indépendants.

Exercice 21. (*) On note 2 = N*, que I'on munit de la tribu F = P(Q2) et
de la mesure de comptage C'. Pour s > 1, on pose

. Montrer que les séries de termes généraux respectifs (— log(1 — i))

“+o00

((s)= X i<—i—c>o.

k=1 k*

. Montrer que lim ((s) = +o0.

s—17t

. Soit s > 1. On note p, la mesure sur (€2, F) telle que

Vie N' puy({i}) = 4(1)1

Vérifier que ps est une mesure de probabilité.
1

Soit p un entier naturel non-nul. Montrer que 4u,(pN*) = -%.

. On note (pg)r>1 la suite des nombres premiers. On pose A = ppN*.

Montrer que
+oo
1} = N Af.
(=0 4

En déduire soigneusement que

1 n
= dim | N oA,
(s) ~ e <k=1 ’“)

. Montrer que les événements (Ay)r>1 sont indépendants sous .

5. Donner une preuve probabiliste de I'identité

n

Vs>1 log((s)= lim » —log(l— is)

n—+oo k=1 pk

k>1
1 ‘
t (pk>k>1 sont divergentes.

. Dans cette question, on s’attache a montrer le résultat suivant : il

n’existe pas de mesure de probabilité p sur N telle que pour tout
n > 1, on ait p(nN) = 12,

On raisonne donc par 'absurde et on suppose qu'une telle mesure de
probabilité existe.

2. Si vous savez déja ce qu’est une variable aléatoire, on peut présenter le résultat

sous la forme plus agréable suivante : il est impossible de construire un espace probabilisé
(Q, F,P) et une variable aléatoire X & valeurs entiéres sur cet espace tels que

1
Yn>1 P(n divise X) = e

En effet, la mesure de probabilité ; = Py contradirait le résultat de l'exercice.
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(a) Soient n et £ des entiers avec £ > n > 1. Etablir 'inégalité

iy < 11 (1=,

pi
Indication : on pourra remarquer que les (p;N);>; sont indépen-

dants sous .
(b) Conclure.

Exercice 22. (*)On s’intéresse au probléme des dérangements : n mathéma-
ticiens déposent leurs chapeaux au vestiaire au début d’un congres et, a la
fin du congres, en reprennent un au hasard par distraction. On s’intéresse a
la probabilité p,, qu’aucun ne retrouve son chapeau.

1. Proposer un espace €2 convenable et une probabilité associée. En dé-

duire que I'on doit avoir p,, = %, ou d,, est le nombre de permutations

de &,, sans point fixe :
d, = Card({c € 6,;V1 <i<n o(i)#i}).

(On pose dy = 1.)
2. Pour 0 < k£ < n, on note A} I’ensemble des permutations de &,, ayant
exactement k points fixes :

r={0ce6,;Card{i € l,....,d | o(i)=1i}) =k}
Montrer Card(A}) = (”) dy—r. En déduire

3 (Z)dk =l

k=0

3. Soit ® 'endomorphisme de R, [X] défini par $(P) = P(X +1) (ou on
rappelle que R, [X] désigne I'ensemble des polynomes réels de degré
inférieur ou égal a n). Déterminer la matrice M de ® dans la base
(1,X,...,X™). Calculer M.

4. Montrer que (do, dy,...,d,).M = (0!,11,...,n!). En déduire que

5. Montrer lim p, = % Montrer que pour n > 2, d, est l'entier le
n——+o0o

plus proche de %'

Exercice 23. Soit (A,),>1 une suite d’événements indépendants, tous de
probabilité non nulle. On pose

+o00o
A= N A,
n=1
et
+oo
n——+oo n=1 k=n

Montrer que P(A) = 0 si et seulement si P(B) =0
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Exercice 24. Une enquéte effectuée parmi les nouveaux adhérents du parti
socialiste francais en 2002 a montré que les femmes représentaient 40, 55%
des nouveaux adhérents. 20, 4% des nouvelles militantes socialistes sont en-
seignantes, tandis que seulement 12, 81% des nouveaux militants de sexe mas-
culin sont enseignants. Parmi les enseignants qui militent nouvellement au
parti socialiste, quelle est la proportion de femmes ?

Exercice 25. Calcul probabiliste de la formule de l’indicatrice d’Fuler

On note 2,, I'ensemble des entiers de 1 a n. On note n = []; p;* la décom-
position de n en produits de facteurs premiers. Le but de cet exercice est de
déterminer le nombre p(n) qui est le cardinal de I’ensemble G,, des d’entiers
entre 1 et n qui sont premiers avec n. On note P la loi uniforme sur €2,,.

1. Pour d divisant n, on note Ay = {k € §,;d|k}. Calculer P(Ay).

2. Soit dy, . .. ,d, des diviseurs de n premiers entre eux. Calculer P(N_, Ay, ).
3. Montrer que P(G,,) =1 — P(U;A,,).

4. En déduire que p(n)/n=TIL(1—1/p;).

Exercice 26. On mélange n(n > 6) paires de chaussetttes et l'on tire au
hasard 6 chaussettes. On considere les événements suivants : F; = { obtenir
trois paires }, Fs = { obtenir au moins une paire }, E5 = { obtenir une seule
paire }. En supposant que tous les ensembles de 6 chaussettes ont la méme
probabilité d’étre tirés, calculer P(E), P(Es), P(E3).

Exercice 27. On choisit au hasard, successivement et sans remise trois
nombres parmi {1,...,n}. Calculer la probabilité que le troisitme nombre
tiré se trouve entre les deux premiers.

Exercice 28. Une élection a lieu entre deux candidats A et B. Le premier
candidat A obtient a voix et le second B obtient b voix avec a > b.

1. Représenter le dépouillement des bulletins a I'aide d’un chemin dans
R? partant de (0, 0) arrivant a (a, b) constitué uniquement de segments
de longueur 1, paralleles a 'axe Oz ou Oy, orientés dans le sens crois-
sant. En déduire un modele équiprobable concernant le dépouillement.

2. Quelle est la probabilité pour qu’au cours du dépouillement,
— le premier bulletin soit en faveur de B?
— A et B se retrouvent a un instant a égalité? (indic. : distinguer
suivant le premier bulletin)
— A ait toujours strictement plus de voix que B?

Exercice 29. Donner un exemple de trois évenements Ay, A5, A3 qui ne sont
pas indépendants et pour lesquels

P(A; N Ay N Ay) = P(A;) P(A,) P(A;) .

Exercice 30. Valeurs d’adhérence de la suite p(n)/n

1. Montrer que pour toute série divergente positive dont le terme général

(u,) tend vers 0, et pour tout ¢ > 0, on peut extraire une sous-série
+oo

(un,) telle que Y u,, = L.
k=1

2. On note ¢(n) l'indicatrice d’Euler. Montrer que ’ensemble des valeurs
d’adhérences de la suite (¢(n)/n),>1 est I'intervalle [0, 1] tout entier.



Chapitre 4

Intégrales

Jusqu’ici, on n’a parlé que de mesures et nullement d’intégrales. Le présent
chapitre va pleinement compenser cela !

On va commencer par donner la définition de l'intégrale dite “de Lebes-
gue” et en énoncer les propriétés fondamentales. Vu le volume horaire du
cours, certains résultats seront admis afin de se concentrer sur la pratique.

4.1 Définition de ’intégrale et propriétés de
base

4.1.1 Définition

Soit (€2, F, 1) un espace mesuré. Pour toute fonction positive f, on définit
I'intégrale de f, notée [ f du ou encore [ f(x) du(x) par

[ # dn=sup Yt {f (@) € ()

ou le sup porte sur toutes les partitions finies de (2.
Lorsque f prend des valeurs négatives, on écrit f comme différence de
deux fonctions positives :

f=f"=f on fT(w) = max(f(w),0) et f~(w) = max(—f(w),0)

Lorsque [ f* du et [ f~ du sont simultanément finies, on dit que f est
intégrable et on peut définir

[1du= [t du= [ 5 an.

Lorsque [ f* dp et [ f~ du sont, 'un fini, Pautre infini, on s’autorise
toutefois a écrire

— [fdu=+ocosi [fTdu=+ocoet [ [~ du < +oo.

— [fdu=—oc0si [ fTdu<+ooet [f~du=+o0.

4.1.2 Propriétés de base de l’'intégrale

Définition : on dit qu'une propriété P relative aux points de € est vérifiée
p-presque partout si il existe E mesurable avec p(E) = 0 tel que pour tout
x € Q\E P(x) est vérifié.

37
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On donne d’emblée sans démonstration les propriétés de base de l'inté-
grale :

— Lien avec la mesure : Pour tout ensemble A mesurable, ona [14 du =

ju(A).

— Positivité : Si f et g sont intégrables avec f < g pu-presque partout,
alors [ f du < [ g du, avec égalité si et seulement si f = g u-presque
partout. En particularité, si f > 0 u-presque partout et [ f du = 0,
alors f = 0 u-presque partout.

— Linéarité : Si f et g sont intégrables, « et § des réels, alors [af +
Bdu=aff+pB[gdu

— Convergence monotone (ou théoréme de Beppo Levi®) : Si
(fn)n>1 est une suite croissante de fonctions mesurables positives conver-
geant presque partout vers f, alors la suite [ f, du converge vers
[ f dp. (la limite peut étre infinie)

L’objectif prioritaire du lecteur est, nous semble-t’il, d’acquérir une bonne
familiarité des propriétés de cette nouvelle intégrale. Aussi, afin de ne pas
lasser par des preuves un peu techniques qui arriveraient avant que l'intérét
de l'outil soit réellement compris, nous rapportons les preuves a une section
ultérieure qui viendra en fin de chapitre.

4.1.3 Conséquences importantes

Théoréme 28 (Lemme de Fatou). Pour toute suite (f,)n>1 de fonctions
mesurables positives, on a

/ lim f, du< lim Jn dp

n—-+oo n—-+oo

Démonstration. 11 suffit de poser ¢, = infy>, fx. (gn) est une suite croissante,
dont la limite est, par définition, lim g, = limf,. On a pour tout n

>

fn In
[fdn = [ g dn
D’ou

lim fodp > lim [ g, du

n—-+o0o n—-+4o0o

Mais d’apres le théoreme de convergence monotone [ g, du converge vers
J g du, ce qui est le résultat voulu. m

Théoréme 29 (Convergence dominée). Si (f,)n>1 est une suite de fonctions
mesurables convergeant presque partout vers f, et telle qu’il existe une fonc-
tion g intégrable vérifiant pour tout n, | f,| < g alors la suite [ f, du converge

vers [ f du.

1. Beppo Levi (1875-1961) est un mathématicien italien. Pas de trait d’union donc
entre Beppo et Levi!
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Démonstration. Les f, sont intégrables car dominées par g : par suite les
fonctions g+ f,, et g— f,, sont intégrables et positives : on peut leur appliquer
le lemme de Fatou :

[ dm g+ f)dp< lim o [(g+ f) dp

n—-4oo n—-4oo
et
/ lim (g—f.)dp< lim  [(g— fu) du
n——+00 n—-+o0o
soit
[odu+[fan< [gdu+ tim [ f,dp
n—-+00
et

/gdu—/fdué/gdu— lim [ fudu

n—-+0o00

En simplifiant, on obtient

/fms lim [ f. dp

n——+00
et
T [ fodp < [ f d
n—-+o0o
ce qui montre bien le résultat voulu. O

4.2 Intégration sur un ensemble

Pour tout ensemble mesurable A et toute fonction intégrable (ou positive)
f, on note

[ £ di= [ 1 du.

Théoréme 30. Si f est intégrable et que (A,)n>1 est une partition dénom-
brable de €2, alors

/f@ziﬁj@h

Démonstration. On pose f, = f xTyn_a, = f X (Z}_;1s,) et on applique
le théoreme de convergence dominée. O]

4.3 Intégrale d’une fonction a valeurs com-
plexes
Soit (€2, F, ;) un espace mesuré et f une fonction de Q2 dans C. On dit

que que f est mesurable sur (€, F, u) si ses parties réelles le sont. On dit
que que f est intégrable sur (2, F, ) si ses parties réelles le sont. Ainsi si f
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s’écrit f = a+1b ou a et b sont des fonctions a valeurs réelles mesurables, on
peut définir [, f dp par

/Qfdu:</gad,u>+i(/ﬂbdu>.

Il n’est alors pas tres difficile de voir que les fonctions intégrables sur
(Q, F, ) a valeurs dans C forment un C-espace vectoriel et que l'intégrale
ainsi définie est C-linéaire : quelque soient les fonctions complexes intégrables
sur (£, F, 1) et quelque soit a € C, on a

/Q(Oéf+g) duza/gfdwr/ggdu-

Si 'on sait que f est mesurable (c’est a dire que la partie réelle a et la
partie réelle b de f le sont), alors comme

la| + [b]
2
alors f sera intégrable si et seulement si |f| Iest.
Enfin, il sera souvent utile de connaitre le résultat suivant : si a et b sont
des nombres réels avec a < b et z un nombre complexe non nul, on a

< [f < lal + 0],

ebz — 9%

= d\(z) =
/[a,b] ‘ (x) z

Dans la suite, la plupart des théorémes seront énoncés pour des fonctions
a valeurs réelles, mais dans le cas de fonctions a valeurs complexes, on pourra
souvent démontrer un résultat analogue en considérant séparément les parties
réelle et imaginaire.

Par exemple, on peut énoncer :

Théoréme 31 (Convergence dominée pour des fonctions complexes). Si
(fn)n>1 est une suite de fonctions mesurables complexes convergeant presque
partout vers f, et telle qu’il existe une fonction g intégrable vérifiant pour
tout n, | fn] < g alors la suite [ f, du converge vers [ f dpu.

Démonstration. Comme |Re f,| < [f.| < g, on peut appliquer le théoréeme
de convergence dominée a (Re f,)n>1. Idem pour (Im f,,)n>1. O

;s i v L. « , )
Le théoreme “évident” suivant mérite tout de de méme une démonstra
tion :

Théoréme 32. si f est une fonction complexe intégrable sur (0, F, ), alors

[, F dul < [ 17

Démonstration. Soit a € C
Re(a/fd,u):Re(/afdu):/Reafdu
Q Q Q
< [lafldu=lal [ 1] dp
Q Q

Si on prend a = [, f du, on obtient

[ £ <1 [ £ aul [ 171 dn,

ce qui donne le résultat voulu. O
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4.4 Quelques cas particuliers importants

4.4.1 Intégration par rapport a une masse de Dirac

Théoréme 33. Soit (2, F) un espace mesuré. On suppose que le singleton
{z} est dans F. Alors, pour toute fonction f mesurable, on a

|1 o= f@).

Démonstration. Par linéarité, comme f = f* — f~, il suffit de traiter le cas
ou f est positive. Soit (£2;);e; une partition mesurable finie. Posons p = 4,.
Pour tout 7 € I, on a

p() inf f < p(S) f(z)

7

En effet, si x & €);, les deux membres de 1’égalité sont nuls, sinon 'inégalité
inf f < f(x) est conséquence de z € ;. En faisant la somme sur ¢ € I, on
Q;

obtient

> () igif F< Q0 wu) f(z) = f(x),

i€l iel
d’ou en passant au sup sur toutes les partitions [ f du < f(x). Cependant,
si 'on prend I = {1,2}, Oy = {z} et Qs = {2}, on a

> () inf [ = f(a)
i€l i

d’ou I'égalité voulue. O

4.4.2 Intégration par rapport a la mesure de comptage

Théoreme 34. Soit 2 un ensemble dénombrable. On note C' la mesure de
comptage sur (2, P(QQ)). Toute fonction définie sur 2 est mesurable. Pour
toute fonction f positive, on a

| fw) dow) = 5 fk).

Dans le cas général, f est intégrable si et seulement si Y. |f(k)| < +o0
keQ

et dans ce cas, on a encore I’égalité ci-dessus.

Démonstration. Soit f positive et (£2;);c; une partition de €

c@) it s = 5 (10 in 1)

ke

< 2 (o, (k)f(F))

D’ou en sommant sur [
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> C(y) mf f< Z (k) f(k))

icl cr ke

Cependant

S5 (a(B)fK) = (zng )

el k€D iel

= > f(k)

ke

d’ou en passant au sup

| f@ dCw) < 5 fk)

Réciproquement soit F' une partie finie de 2. On consideére la partition
de cardinal |F'| 4+ 1, formée des |F| singletons de F' et de F'° : elle donne lieu
a une somme

Zf(k)—l— 1nff>Zf

keF keF
On en déduit

/f ) dC(w) > 3 f(k)

keF

En prenant la borne supérieure sur toutes les parties finies de €2, on obtient

/f ) dC(w) > Y f(k)

ke

d’ou I'égalité voulue. Dans le cas ou f est de signe quelconque, la formule
précédente appliquée a |f| donne

L 1£1@) dow) = 3 17(k)

keQ
Dans le cas ou la derniere somme est finie, en appliquant cette fois la formule

aftetf,ona
/f+ ) dC(w) = S £ (k)

ke

£ ) dCw) = 3 (k)

keQ

et

Ces deux quantités sont finies car f* < |f| et f~ < |f| : en faisant la
différence, on obtient alors par linéarité

/f dC(w) = " f(k)

keQ
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4.4.3 Fonctions simples (ou fonctions étagées)

On appelle fonction simple (ou fonction étagée) toute combinaison linéaire
d’indicatrices d’ensembles mesurables.

On peut dire aussi qu’'une fonction simple est une fonction mesurable qui
ne prend qu'un nombre fini de valeurs.

Lemme 2. Toute fonction mesurable positive [ (éventuellement infinie) peut
s’écrire comme limite simple d’une suite croissante de fonctions simples (f,).

Démonstration. On définit sur [0, +oo] une fonction ¢, par

@n(x) = 27" Int(2"2)lyp ) (7) pour x < 400 et p,(+00) = n. Evidemment
la suite (¢,(00))nsn1 tend en croissant vers +oc. Soit # > 0. Evidemment
Lo 1) (x) > Lo (x) Posons y = 2"z, On a y > Int(y), donc 2y > 2Int(y).
Mais 2 Int(y) est entier, donc Int(2y) > 2Int(y), ce qui nous donne finalement
Ont1(T) > pn(x). D’autre part pour n >z, ona z — 27" < p,(z) < x, donc
on(x) tend vers x. Il suffit alors de poser f,(x) = @, (f(z)). O

4.4.4 Intégration par rapport a une somme de deux
mesures

Théoréme 35. Soit (2, F) un espace mesuré, u et v deur mesures sur
(Q, F). Soit f une fonction (Q, F)-(R, B(R)) mesurable positive. On a

/Qfd(,u—kl/):/gfd,u—l—/gfdu. (4.1)

Dans le cas ou f est de signe quelconque, si [, |f| dp et [o|f| dv sont finis,
f est intégrable par rapport a p+ v et on a encore (G1).

Démonstration. Dans le cas ou f est 'indicatrice d’'un élément de F, 'iden-
tité () découle de la définition de la mesure somme de deux mesures et de
la valeur de l'intégrale d'une indicatrice. Par linéarité, la formule (ET) est
encore vraie si f est une combinaison linéaire d’indicatrices d’éléments de
F, autrement dit une fonction simple. En utilisant le lemme H0 et le théo-
réeme de convergence monotone, il s’ensuit que I'identité (E-1) est vraie pour
toute fonction mesurable positive. Comme précédemment, le cas général s’en
déduit en séparant partie positive et partie négative. n

4.5 Lien avec l'intégrale de Riemann

Théoréeme 36. Soit f une fonction continue par morceaux sur un intervalle
compact [a,b]. Alors

[, 7@ o) = [ 1) at

Démonstration. Avec la relation de Chasles et la linéarité de l'intégrale de
Lebesgue, on peut se ramener au cas ou f est continue sur [a, b]. Posons

(z - a) b—a>'

)

b—a n

fulw) = 1 ( + Ent(”
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Comme f est continue sur [a,b], elle y est uniformément bornée par une
constante M. Comme f est continue sur [a, b, f,(x) y converge partout vers
f(x). Comme |f,| < My, le théoreme de convergence dominée assure que
Jiag) fn(x) dA(z) converge vers [, f(z) dA(x). Cependant

b— g0l b—
/M ful) dA (@) = *— N fla+k

k=0

).

a
n

On reconnait une somme de Riemann qui converge vers [ f(z) dz. Finale-
ment, [, f(2) dA(z) = J2f(t) at. O

Théoreme 37. Soit f une fonction positive continue par morceauz sur un in-
tervalle ouvert [a,b] (b peut valoir +o0c). Alors Uintégrale impropre [ f(t) dt
est convergente si et seulement si [, f(z) dA(z) < +oo. Dans ce cas

b
T dxa) = [ an
Démonstration. Soit b, une suite de réels de [a,b] tendant vers b. flg,
converge en croissant vers fli,,, donc d’apres le théoreme de convergence
monotone [i, , f(z) dA(z) < +oo est la limite de [, 1 f(x) dA(z) < +oo0.
Par définition d’une intégrale impropre, [° f(t) dt est la limite de [ f(t) dt,
si elle est finie. Comme [, ;, 1 f(7) dA(x) = [P £(t) dt, le résultat s’ensuit. [

Théoreme 38. Soit f une fonction continue par morceaux sur un intervalle
ouvert |a,b| (b peut valoir +00). Alors f est intégrable sur |a,b| par rapport
d la mesure de Lebesque si et seulement si intégrale impropre [°|f(t)| dt est
convergente. Dans ce cas

Wﬁwdmwzlﬂww

Démonstration. Dire que f est intégrable sur [a, b] par rapport a la mesure
de Lebesgue, c’est dire que [, , |f(z)| dA(x) < +o00. Le premier point découle
donc du théoréme précédent. Soit b, une suite de réels de [a, b[ tendant vers
b. fljgp,) converge vers fli, et |fligp, | < |f], donc d’apres le théoreme de
convergence dominée [, , f(z) dA(z) est la limite de [, , f(z) dA(z), c'est &
dire la limite de [’ f(z) dx, qui est [° f(x) dx, par définition d’une intégrale
impropre. O

Il est important de remarquer que la convergence de I'intégrale impropre
f; f(z) dz n’entraine PAS l'intégrabilité de f.

Ainsi, on verra en exercice que 'intégrale de 0 a +o00 de % est une inté-
grale de Riemann impropre convergente ; cependant *>-* n’est pas intégrable
sur R, pour la mesure de Lebesgue.

Pour terminer, quelques remarques élémentaires : I'intérét de I'intégrale
de Riemann, c’est que 'on sait la calculer!

En particulier grace au théoreme fondamental de I'analyse : si F' est une
primitive de f sur [a,b] (c’est a dire si F' = f), alors
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En particulier, si ¢ est une fonction monotone strictement croissante, la
dérivée de F o ¢ est ¢'.(f o), ce qui nous dit que F o ¢ est une primitive
de ¢'.(f o p), et donc

[ @ o)) de = Fo®) - Flo(@) = |7 (o) do

C’est la formule dite “de changement de variable”.

4.6 Applications aux intégrales a parametre

4.6.1 Continuité d’une intégrale dépendant d’un para-
metre

Théoréme 39. Soit (2, F, 1) un espace mesuré. Soit f(x,t) une fonction de
deux variables définie sur Q x T, ou T est un espace métrique. On suppose
que pour tout t € T, la fonction x — f(x,t) est mesurable par rapport a F.
On suppose qu’il existe une fonction g intégrable par rapport a p telle que
pour tout t € T'.

|f(z,t)] < g(x) p—p.p.

On suppose enfin que pour p-presque tout x t — f(x,t) est continue..

Alors
Ft)= | f(a.t) dux)

définit une fonction continue sur T

Démonstration. Que F soit bien définie découle de 'inégalité | f(z,t)| < g(x)
et de l'intégrabilité de g. Soit t € T. Pour montrer que F' est continue en
t € T, il suffit de montrer que pour toute suite (t,),>; d’éléments de T
convergeant vers t, F'(t,) tend vers F(t). Pour cela, il suffit d’appliquer le
théoréeme de convergence dominée a la suite f,, définie par f,(x) = f(x,t,) :
pour p-presque tout z, f,(x) converge vers f(x,t) grace a la continuité de
t — f(z,t) et on a la domination |f,| < g. O]

4.6.2 Dérivabilité d’une intégrale dépendant d’un pa-
rametre

Théoréme 40. Soit (2, F, 1) un espace mesuré. Soit f(x,t) une fonction de
deux variables définie sur  x T, ou T est un intervalle de R. On suppose
que pour tout t € T, la fonction x — f(x,t) est mesurable par rapport a
F et intégrable par rapport a . On suppose enfin que pour p-presque tout
x t — f(x,t) est dérivable par rapport a t, et qu’il existe une fonction g
intégrable par rapport a u telle que pour tout t € T.

!g{(fut)l < g(w) p—p.p.

Alors
F(t) = | f(a.t) du()
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définit une fonction dérivable sur T, avec

P = [ D) dpta

Démonstration. Il s’agit de montrer que pour toute suite ¢,, de points de T’
tendant vers t,

lim
n——+oo tn —t

Posons f,(x) = 7“””) {(“).

La suite de fonctlons mesurables (f,)n,>1 converge p presque partout vers
‘Z{(m t), ce qui assure la mesurabilité de = — %{( ,t). De plus, d’apres

I'inégalité des accroissements finis, on a |f,(x)| < g(x) p presque partout.
Ainsi, d’apres le théoreme de convergence dominée, [, f,, du(x) converge vers
Jo %{(:p,t) du(z), cependant [, f,, du(z) = ZE=0 e qui donne donc le

tn—t
résultat voulu. ]

P =80 _ [ 0 t) duta).

Remarque importante : lorsque I'on veut démontrer la continuité (ou la
dérivabilité) de F'(t) défini comme précédemment sur un intervalle 7' non
compact, il est rare que I'on trouve une fonction majorante g qui convienne
pour toutes les valeurs de 7. Cependant, comme la continuité (ou la déri-
vabilité) est une propriété locale, il suffit de montrer que pour tout t € T,
il existe un voisinage V' de t tel 'on ait une majoration uniforme pour les

teV.

4.7 Mesures a densité

Soit (2, F, p) un espace mesuré Soit f une fonction positive mesurable
de (€2, F) dans (R, B(R). On peut définir une application v de (€2, F) dans

[0, +o00] par
:/Af du.

Il n’est pas difficile de démontrer que v est une mesure (exercice laissé au
lecteur)

On dit que v est une mesure qui admet une densité par rapport a pu et
que cette densité est f.

En réalité il y a ici au moins un abus de langage : en effet, une méme
mesure ne peut elle admettre plusieurs densités par rapport a p?

Proposition 2. Soit f et g deux fonctions mesurables étant toutes deux des
densités de v par rapport a . Alors f = g u presque partout.

Démonstration. Posons A, = {w : f(w) > glw)} 0 = v(A) —v(A

) =
Ja, fdu—J4 g du = [y (f —g) du. De méme si I'on pose A = {w
fw) < gw)} 0=v(A)=v(A) = [4_ fdu—Jsgdu=Js (f—9) du-
Cependant |f — gl = (f — glla, — (f — g)la_, donc

Jif=glan = [(F =g, du— [(F =gl d

= /A+(f—g) du—/A_(f—g) dp
= 0-0=0
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Ce qui implique que f = g p presque partout. O

Théoréme 41. On suppose que v est une mesure qui admet une densité f
par rapport a p. Alors, pour toute fonction mesurable g

gl av = [1glf dp. (42

Si cette quantité est finie, on a alors

/g dv = /gf dp. (4.3)

Démonstration. Si g =14 avec A € F (A23) est immédiat. Par linéarité, (A=3)
est également vérifié lorsque g est une fonction simple positive. En utilisant
le lemme B0 et le théoréme de convergence monotone, il s’ensuit que (E=3)
est vraie pour toute fonction mesurable positive, donc en particulier (£22) est
vraie pour toute fonction mesurable g. Supposons maintenant que [ |g| dv =
[lg|lf din < 400 : on peut alors écrire g = g, — g_ avec [ g, dv < +o0 et
Jg— dv < +00. Comme g, et g_ sont des fonctions mesurables positives, on
a [gr dv= [g.f duet [g- dv = [g_f du. En faisant la différence, on
obtient donc [(g+ —g-) dv = [(g9+ — g-)f du, soit (E=3). O

4.8 Intégration par rapport a une mesure image

Théoréme 42. Soit (Q, F, 1) un espace mesuré, T une application mesurable
de (2, F) dans (', F"). Soit f une application mesurable de (', F') dans
(R, B(R)). Alors f est intégrable par rapport a ur si et seulement si foT est
intégrable par rapport a . Dans ce cas, on a

| @) dury) = [ (FoT)(a) du(a) (4.4)

Démonstration. Prenons d’abord le cas ou f est 'indicatrice d’un ensemble
AeF :ona [of dur = [olla dur = pr(A) = p(T71(A)). D’un autre coté
IyoT =Tp-1(ay, donc [ foT dp = [olp-1(ay du = p(T(A)).L'égalité (22)
est donc vérifiée lorsque lorsque f est I'indicatrice d’'un ensemble A € F'.
Par linéarité, elle est donc vérifiée pour toute fonction étagée mesurable.

Soit maintenant f une application mesurable positive de (£, F’) dans
(R, B(R)). 1l existe une suite croissante d’applications étagées (f,) conver-
geant ponctuellement vers f. Pour tout n, on a

/Q/ Ju(y) dur(y) = /Q(fn oT)(x) du(z)

En appliquant le théoréme de convergence monotone, on obtient a la limite
Jor f(y) dur(y) = Jo(f o T)(z) du(z). En particulier, pour toute application
mesurable de (2, F') dans (R, B(R)), on a [, |f| dur = [o |f] o T du(x), ce
qui montre que bien f est intégrable par rapport a ur si et seulement si foT’
est intégrable par rapport a pu. Dans ce cas, fT et f~ sont intégrables, posi-
tives, et en soustrayant Uidentité [o, f~ dur = [ f~ o T du(x) de l'identité
Jor [T dur = [ fT oT du(x), on obtient bien le résultat voulu. O
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4.9 Mesure produit

On suppose que (X, X, u) et (Y, ), ) sont des espaces mesurés. On rap-
pelle que X ® )Y est la tribu engendrée par les ensembles de type X x Y, ou
(X,Y) décrit X x V.

4.9.1 Construction de la mesure produit

Lemme 3. Pour tout Ac X @Y,z € X ety €Y, on note
Ay(z) ={yeY :(z,y) € A}

et
Ay) = {r € X : (x,y) € A}.

Alors Ay(z) € Y et A,(y) € X. De plus, si une fonction f est mesurable de la
tribu X @ Y wers la tribu C, alors pour chaque x fixé la fonction y — f(z,y)
est mesurable par rapport a la tribu Y, et de méme pour chaque y fizé la
fonction x — f(z,y) est mesurable par rapport a la tribu X.

Démonstration. On va commencer par montrer la deuxieme proposition.
Fixons z € X et montrons que f} : y — f(z,y) est (Y, V) —(C,C) mesurable.
Notons 7l : Y — X x Y qui a y associe (z,y). 7l est (Y,;V)— (X XY, X x )
mesurable car chacune des composantes est mesurable. Maintenant, 1'iden-
tité f! = fonl donne la mesurabilité voulue, par composition d’applications
mesurables.

Revenons a la premiere proposition : la section verticale de niveau x :
Ay (z) = {y € Y : (z,y) € A} peut s'écrire A (z) = (f1)1({1}), avec
X y) = 1a(z,y). Or Iapplication de X xY dans R qui a (x, y) associell4 (z, y)
est (X x Y, X x ) — (R, B(R)) mesurable, donc d’apres ce qui précede, fl
est (Y,Y) — (R, B(R)) mesurable, d’ou A,(z) € V.

On traite de la méme manicre A,(y) et f7 -z — f(z,y).

O

Théoréme 43. Soit (X, X,pu) et (Y,Y,v) deux espaces mesurés dont les
mesures i et v sont o-finies. Il existe une unique mesure m sur (X xY, X®))
telles que pour tous X € X et Y € Y, on ait

m(X xY)=u(X)v(y).

On notera dans la suite p @ v cette mesure. De plus, pour tout £ € X ® ),
les fonctions © — v(Ey,(z)) et y — u(E,(y)) sont mesurables et l'on a

J ES@) dutw) = [ n(Euy)) dvly) = (u© v)(E).
Démonstration. Supposons d’abord que p et v sont finies. Soit E dans X®Y ;
d’apres le lemme précédent la fonction  — v(E,(z)) est bien définie. Notons
T7 la famille des ensembles £ € X ® ) tels que cette fonction soit mesurable
de X dans B(R). Il n’est pas difficile de voir que T’ est un A\-systéme (voir la
derniere section du chapitre 3). Mais 7" contient tous les pavés (les éléments
de X x )) : en effet, soit prenons £ = A x B,avec Ac X et BE€) :ona
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E,(z) ={y € B(z,y) € A x B}. Ainsi Ey(x) = B si x € A et @ sinon, et
donc v(E,(z)) = v(B) si x € A et 0 sinon. Ainsi v(E,(z)) = v(B)lla(x), et
x +— v(B)ll4(z) est bien une fonction mesurable de X dans B(R). 77 est donc
un A-systéme qui contient un 7-systeme qui engendre X ® ). Ainsi, d’apres
le théoreme A-m, 7' est X ® ) tout entier. Finalement, pour tout E dans
X ® ), on peut définir

mi(E) = [ v(E,(2)) du(x):

et de méme on pourrait définir

my(E) = | n(E,(y)) dv(y)

Prenons & nouveau £ = A x B : Ey(x) = {y € B(z,y) € A x B}. Ainsi
Ey()—381x€Aet®s1nonetdon (Ey(:z:)) v(B)siz € Aet0
sinon. Ainsi my(E) = [y Lav(B) du = u(A)v(B). En procédant de la méme
maniere, on obtient mq(F) = [y Ipu(A) dv = pu(A)v(B). my et mg sont donc
des mesures finies qui coincident sur les pavés : elles sont donc égales.
Passons maintenant au cas ou p et v sont o-finies : on peut partitionner
X (et Y) en une famille dénombrable d’ensembles de mesure finie : X =
Uz A; et Y = U3, B;. On peut alors noter m® la mesure associée comme
précédemment aux mesures traces vi4, et B;- En d’autres termes

m" (E) :/XVM"(E( dpy, (v /M|B ) dvja,(z)
Alors, il n’est pas difficile de voir que la mesure m = 3>, >, m*. On a alors
m(A x B) = ZZm (A x BN (A; x Byj))
— sz (AN A;) x (BN By))
= ZZ“ (AN A;)v(BnN Bj)
= Zu (ANA))_ (BN B;))
i j

— W(Aw(B)

]

Remarque : il n’est pas difficile de voir que si p, v sont des mesures o-
finies, a et b des réels, alors (ap) ® (bv) = (ab)(p ® v) — utiliser la partie
unicité du théoreme.

Exemple : soit (X, X, u) un espace mesuré avec p o-finie, f une applica-
tion mesurable de (X, X') dans (R, B(R)). On note T I'application de X x R
dans lui-méme qui a (z,y) associe (x,y+ f(x)). Alors, T est une application
mesurable qui laisse invariante la mesure p ® .
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Démonstration. T est mesurable car ses composantes sont mesurables. No-
tons m = pu ® A. Il suffit de montrer que pour tout A € X et tout borélien
de R B, I'ensemble E = A x B vérifie m(E) = m(T~*(E)). On a

m(E) = [ ME,()) du(x) et m(T™E) = [ MN(T(E)),(x)) du(a)

Comme on 'a déja vu, E,(z) = Bsiz € A, @, sinon, de sorte que A(E,(z)) =
A(B)lLs(x). Cependant,
(TH(E))y(z) ={y € R; (v,y) e T"H(E)} = {y € Ri(w,y + f(v)) € E},

qui est donc égal & B — f(z) si o € A, zéro sinon. Ainsi, A\((T*(E)),(z)) =
A(B — f(x))la(x). Maisi on sait que la mesure de Lebesgue est invariante par
translation : A(B — f(z)) = A(B). Il n’y a plus qu’a intégrer et on a 1’égalité
voulue. O

4.9.2 Théorémes de Fubini et Tonelli

Théoréme 44 (Tonelli). Soit (X, X, pu) et (Y,V,v) deux espaces mesurés
dont les mesures p et v sont o-finies et f € V(X XY, X ® ).

Pour tout v € X, la fonction y — f(x,y) est mesurable de (Y,)) dans
(R4, B(R,)) et la fonction

T /Yf(:v,y) dv(y)

est dans V4 (X, X).
De méme pour tout y € Y, la fonction x — f(x,y) est mesurable de (X, X)
dans (Ry, B(R4))

v [ Fay) duta)

est dans V. (Y, )).
Enfin, on a les égalités

/X><Yf dp@v = /X (/Yﬂx?y) dV(?J)) dp(x)

/Xxyf dM®V=/Y</Xf(:B,y) d,u(:z;)) dv(y)

Démonstration. La mesurabilité de y — f(x,y) est une conséquence immé-
diate du lemme B.
Supposons que f s’écrive comme l'indicatrice d’un ensemble A € X ® ) :

on a alors
| fay) dvly) = v(A,)

D’apres la deuxiéme partie du Théoreme B3, 'application z — [y f(x,y) dv(y)
est donc mesurable et I'on a

[ty dvty) dute) = [ v(AL) duto)
= p®v(A)
= /X><Yf du @ v.
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Le résultat s’étend aisément a la classe des fonctions simples par linéarité,
puis & f € Vi (X x Y, X ® Y) en utilisant le lemme B0 et le théoreme de
convergence monotone. O

Théoréme 45 (Fubini). Soit (X, X, u) et (Y,V,v) deux espaces mesurés
dont les mesures p et v sont o-finies et f € V(X x Y, X ® Y). On suppose
que

/ |f] dp®@ v < 4o00.
XxY

Alors, il existe X' € X et Y' € YV avec p(X\X') =v(Y\Y') =0 et

[ tdnev=[ ([ fy) dviw) du)
et

Jood v =[ ([ 560 duw) vty

Démonstration. On va juste montrer la premiere égalité. D’apres le théoreme
de Tonelli,

/x (/y [z 9)l d”@)) dp(r) = /ny |f| dp® v < +o0

Il s’ensuit que si 'on pose

X' ={z € X; [ /(@) dv(y) < +o0},

on a u(X\X’) =0.

Par suite p @ v(X x Y\X'xY) = u(X\X")v(Y) = 0. (On rappelle que dans
R,, 0.00=0.)

Ainsi, comme 'hypothese [y.y |f] dp ® v < 400 entraine l'existence de
Jx«y f di® v, on peut écrire

= [, =) duey

= [ frdpev— [ fduev
X'XY X'xXY

= [ (Lrrwy antw) duw) [ ([ 5w dviy)) duta)
= [ ([ @y ) = ([ 1@y dvly) duo)
= [ ([ sy dv) dut)
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4.9.3 Associativité de la mesure produit

Soient (X, X, ), (Y, Y, v),(Z, Z, x) trois espaces mesurés o-finis. Comme
précédemment, on note X ® Y ® Z la tribu engendrée par les ensembles de

la forme A x B x C, ou (A, B,C) décrit X x Y x Z.

On note ¢ 'application de (X xY)xZ — X XY xZ: ((x,y),2) — (x,y,2)
et ¢ l'application de X x (Y x Z) - X xY x Z : (z,(y,2)) — (x,y, 2).
Alors la mesure image m; de (u ® v) ® x par ¢ et la mesure image M, de
1 ® (r® x) par ¥ sont égales : on note simplement cette mesure p ® v ® .

Démonstration.

mi(Ax BxC) = (pnov)®x(p ’1(A><B><C))
:( v) @ x((A x B) x C)
= (AXB)()
= M( w(B)x(C)

my(Ax BxC) = pu(vex) (@ ' (Ax Bx(0))
= u® vex)(Ax(Bx0))
= pA)rex)(BxC0)
= wAw(B)x(C)
Ainsi, les mesures coincident. [

4.9.4 Convolution de mesures

Soit 11 et v deux mesures o-finies sur (R, B(R?)). On appelle convolée de
i et v et on note pxr la mesure image de p®v par application (z,y) — x+y.

On se contente pour 'instant dénoncer quelques propriétés simples : si p,
v sont des mesures o-finies, a et b des réels, alors

— (ap) xb(v) = (ab)(pu * v).
— ux0=0xpu=0.

Démonstration. Soit f: (x,y) — x +y.

(a) xb()(A) = ((ap) @ b(w))(F'(A))
ab(u @ v)(f~(4))
— ab(u *v)(A)

px0(A) = (n®0)(f~(A)) = 0 et de méme 0+ p(A) = (0@ ) (f~1(A)) =
0 O
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4.10 Les théoremes généraux et la mesure de
comptage

Un certain nombre de théoremes généraux donnent des résultats tres pra-
tiques lorsqu’ils sont utilisé avec la mesure de comptage. On va juste en
donner deux, mais le lecteur aura intérét a relire chaque théoreme en se de-
mandant quel résultat on obtient lorsqu’on prend pour une (ou toutes) les
mesures en jeu la mesure de comptage. Bien siir, il retrouvera parfois des
résultats connus.

Théoréme 46. Soit donnée une famille de nombres réels a(k,n) pour k >
1,n > 1 entiers. On suppose qu’il existe une suite de nombres réels positifs
(ck)k>1 avec les propriétés :

+o0
V(n,k) e N* x N*  |a(k,n)| < cg, kZ cr < +o00.
=1

On suppose que pour tout k > 1, la limite suivante existe :

lim a(k,n) = a(k, o).

n—+oo
+o0 +oo
Montrer que les deux séries s, = Y. a(k,n) et s= 3. a(k,o0) convergent
k=1 k=1

absolument et que l'on a lim s, = s, soit

n—-+o0o
+oo +o0
lim > a(k,n)=> a(k,oc0).
note 3 k=1

Démonstration. Ici, il s’agit d’appliquer le théoreme de convergence dominée
a la mesure de comptage. O]

Théoréme 47. Soit (Q, F, 1) un espace mesuré, (fn)n>1 une suite de fonc-
tions mesurables positives de (Q, F, u) dans (Ry, B(R,)). On pose f = 3.

Alors .
dy = /nd.
/qu nZ::leu

Démonstration. On peut, au choix, appliquer le théoréme de Tonelli & f(n,x) =
fn(z) en intégrant sur N* x 2, ou encore appliquer le théoréme de convergence
monotone aux sommes partielles. ]

Remarque : une conséquence de ce théoréme, c’est que si la série de terme
général [, f, du converge, alors f est intégrable et en particulier f(w) est fini
pour p-presque tout w. En particulier, pour une suite f,, de fonctions mesu-
rables de signe quelconque, si la série de terme général [, |f.| du converge, la
série de terme général f,(w) converge (absolument) pour p-presque tout w.

4.11 La mesure de Lebesgue sur RY.

On appelle mesure de Lebesgue sur R? la mesure A*?. On la note parfois
A, parfois méme A lorsqu’il n’y a pas de confusion possible (mais ce n’est
pas une tres bonne idée quand on débute).
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4.11.1 Transformations affines

Théoréme 48. Soit y € R%. La translation x — x + y laisse invariant la
mesure de Lebesque sur RY.

Démonstration. 1l suffit de vérifier 'invariance pour un pavé, ce qui est im-
médiat. [

Théoréme 49. Soit M € SLy(R) (c’est a dire que det M = 1). L application
x +— Mz laisse invariant la mesure de Lebesque sur RY.

Démonstration. Un théoreme d’algebre linéaire dit que tout élément de SLy4(R)
peut s’écrire comme produit de matrices de transvections, c’est a dire de ma-
trices de la forme

1 O
1 A

. = I, + \E;; avec 1 # j,
O 1

1

ou E;; est la matrice donc tous les coefficients sont nul, sauf celui en (7, j) qui
vaut 1. Ainsi, il suffit de montrer le résultat pour une matrice de transvection.
Mais dans ce cas, c’est un cas particulier de I’exemple vu plus haut. O

Théoréme 50. Soit M € My(R). Pour tout borélien A, on a N\ (A) =
| det M|\I(A).

Démonstration. Dans le cas ou M = diag(A,1,...,1), on vérifie facilement
la formule lorsque A est un pavé : on a deux mesures qui coincident sur un
m-systeme qui engendre la tribu, elles sont donc égales. Passons au cas ou M
est inversible : on peut écrire M = diag(det M, 1,...,1)N, et N € SLy4(R).
Ainsi

M(MA) = X(diag(det M,1,...,1)NA) = | det M|A\*(NA)
= |det M|NY(N"Y(NA)) = |det M|\ (A).

Reste le cas ou M est non-inversible, dans ce cas det M = 0, donc il faut
montrer que A\4(MA) = 0, pour cela il suffit de montrer que A¢(Im M) = 0.
Or Im M est un espace vectoriel de dimension n — 1, il existe donc une
application inversible qui envoie Im M dans R?~! x {0}. Comme R"~* x {0}
est de mesure nulle, Im M aussi. O

Corollaire 6. Si M est inversible, la mesure image de A par x — Mz + b
1 \d

est W/\ .

Corollaire 7. Soit M inversible et b € R%. On pose T(x) = Mx + b.

Soit maintenant pu; une mesure positive sur R? admettant une densité f,
par rapport a la mesure de Lebesque sur RY. Alors, la mesure image de ji;
par T admet comme densité par rapport d la mesure de Lebesque sur R? la
fonction fo définie par

1 -1
foly) = mfl(T (y))-
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Démonstration. Soit g une fonction mesurable positive sur Os. Notons ps la
mesure image de py par T. D’apres le théoreme de transfert,

/ g duy = / (g0T) dm
R4 R4
= [ (go) 1 ax’
Rd
- /d(goT)(fl 0T oT) d\
R
- / (g% froT 1) oT d\
Rd
= [ (g% froT) dxd
1
= T d\
/[Rdg < (fie )ydetM\
ce qui donne le résultat voulu. O

Les théoremes qui précedent correspondent a des transformations affines,
ou si 'on préfere, a des changement de variables affines. On va maintenant
voir le cas général.

4.11.2 Changement de variables C!

Théoréme 51. Soit U, U’ deux ouwverts de R?, @ un C*-difféomorphisme de
U dans U'. Soit f une application mesurable sur U’. f est intégrable sur U’
si et seulement si f o @(.) x |det D. ¢| est intégrable sur U et dans ce cas

L, 7@ dNw) = | Fe@)) x |det D, | dA(a).

Ce théoréme est admis

Corollaire 8. Soit O, et Oy deuz ouverts de R4, d > 1. On suppose que T
est un Cl-difféomorphisme de O dans O,. Soit maintenant p, une mesure
positive sur R? telle que p(RN\O;) = 0 et admettant une densité fi par
rapport a la mesure de Lebesque sur R:. Alors, la mesure image de y; par T
admet comme densité par rapport d la mesure de Lebesque sur R? la fonction

fa définie par

—1 _1 i
s = ({15, gyt o o

Démonstration. Soit g une fonction mesurable positive sur Os. Notons ps la
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mesure image de py par T'. D’apres le théoreme de transfert,

/ng2 = /(goT)dul
02 Ol
= /(goT)ﬁ d\
01
_ / (goT)f1 |det Dy T~ || det D,T| dX
01
- / (g% (froT™) x |det D) o T |det D,T| dA
01

_ / g% (fioT™Y) x |det DT dA
Oz

ce qui donne le résultat voulu. O
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4.12 Premiers exercices d’intégration

Exercice 31. Soit C, 'ensemble des fonctions continues bornées sur R. Soient
w et v deux mesures finies sur (R, B(R)). Montrer que si pour toute f € Gy,

Jr fdp=Jg fdv,alors p=v.

Exercice 32. Soit p une mesure finie sur (€2, F) et f une application finie
p-presque partout. Montrer que les quatre conditions suivantes sont équiva-
lentes :

1. f est intégrable par rapport a pu.

DN

- Jyiyisny [f] di tend vers 0 quand n tend vers l'infini
- Xpzinp(n < [fl < n+1) < +oo.

S0 i(lf] > ) < +oc.
Indication : montrer ¢ <= b,a <= c¢,d = ¢, (c&b) = d.

= W

Exercice 33. Soit u une mesure sur (£, F) et f intégrable par rapport a p
. Montrer que la fonction

+oo ]

9= =5/ M

n=1 ﬁ
est intégrable par rapport a u.

Exercice 34. (*)Le but de cet exercice est de montrer le théoréme du retour
de Poincaré. Soit (€2, F, 1) un espace mesuré et 7' une transformation, c¢’est
a dire une application mesurable de (€2, F) dans lui-méme. On suppose que
1 est une mesure finie et qu’elle est invariante sous l'action de T, c’est a
dire que la mesure image de p par I'application 7" est u elle-méme. Alors, le
théoreme du retour dit que pour tout ensemble mesurable A de mesure non
nulle, la suite des itérées (7™(x)),>o passe une infinité de fois dans A pour
presque tout x appartenant a A.

1. On pose
N(x) = Z_:OIIA(T”(CE))

ainsi que Y (x) = exp(—N(z)), avec la convention exp(—(+o0)) = 0.
Montrer que Y est une application mesurable intégrable par rapport

a L.

2. On pose Z(z) = Y (Tx). Montrer que Y (z) = e '@ Z(z), puis que
JY (2) dp(z) = [ Z(x) dplz).

3. Conclure.

Exercice 35. Intégration par rapport a une somme de mesures.
Soit (f4;);en une suite de mesure définies sur un espace (2, F).
1. Montrer que p = Y ;e f4i est une mesure sur (2, F).
2. Montrer que pour f mesurable positive, puis pour f intégrable, on a

| fan=3 [ fdp.

1€EN
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Exercice 36. Soit (f,,)n,>0 une suite croissante d’applications p-intégrables
convergeant y presque partout vers f. On suppose qu’il existe une constante
K telle que

Yn >0 /fndugK.

Montrer que f est p-intégrable et que [ |f,, — f| du tend vers 0 lorsque n tend
vers l'infini.

Exercice 37. Soit (f,,)n>0 une suite décroissante d’applications p-mesurables
positives. On suppose que f; est p-intégrable. Montrer que (f,,) converge
simplement vers une fonction mesurable f, que f est u-intégrable et que
[ |fn — f| du tend vers 0 lorsque n tend vers Uinfini.

Exercice 38. Soit f une fonction réelle intégrable sur (2, F, u). Montrer
que si [, f du =0 pour tout A € F, alors f = 0 presque partout.
Exercice 39. (*)Etudier la limite, lorsque n tend vers l'infini de

!
1. [ 0gx+n e *cosx dv

2. fol 1+nz dI

(1+4x)™
+oo 1+nz
3. 1 aa da
Exercice 40. 1. Calculer I,, = fol 2" Inx dr pour n € N

2. En déduire la valeur de [y 222 dz, sachant que Y1 n=2 = 72/6.

1

3. En calculant de deux manieres différentes 'intégrale / (1—2)" In(x) dx,
0
montrer que pour n > 0, on a

i()ml);;_HE " :zi:llf

Exercice 41. Démontrer que

/Ol(e —1)(logz + )d)\( )= fn(nn+4i)7z7j+11)'

n=1
. L =X (=)
Exercice 42. Calculer / —— dz. En déduire Z .
0o 14a2 = 2n+1
+oo sin ax R a
Exercice 43. Démont / =3
xercice émontrer que ; — T = nzl a2
1 1 2 +o0o —1)"
Exercice 44. Démontrer que /0 (mlii? dr = QTLX;; (2(n+)3)3

Exercice 45. Fonction I’

On définit la fonction I' sur |0, +o00| par

M) = | T et ).
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Montrer que cette fonction est bien définie et qu’elle vérifie, pour tout réel
a > 0, I'égalité I'(a 4+ 1) = a-T'(a). En particulier, vérifier que pour tout
entier n > 0, on a :

1, 1. (2n)!
2 =T gt

I(n+1)=n! et T(n+

Exercice 46. (*)Intégrales de Wallis
1. On pose
/2
W, = / cos™ 6 db.
0

Montrer que W, = ”T_IWR_Q. En déduire que la suite (nW,W,,_1),>1
est constante.

2. Montrer W,,W,, 11 < W2 < W, W, _1; en déduire I'équivalent W, ~
e
Exercice 47. Calcul de l'intégrale de Gauss(*)

1. On pose J, = fo\/ﬁ(l - %)" dt. Montrer que  lim J, = [;F® et dt.

n—+o0o
2. Exprimer J, en fonction d'une intégrale de Wallis. En déduire la valeur
de l'intégrale de Gauss :

+oo 1
/ e 12 gy = 5\/ 2.
0

Exercice 48. (*)Calcul de I'(1/2)
Connaissant la valeur de l'intégrale de Gauss, montrer que

['(1/2) = /7.
Exercice 49. Formule de Stirling
1. Montrer que [, z"e™® dx = o(I'(n +1)).
2. Montrer que % f\r (1+ })"e*“\/ﬁ du.
3. Montrer que pour tout z €] — 1,1, on a In(1 + z) — 2 < —%.
4. On rappelle que [;" e /2 gt = 1@. Montrer que

<n+1) \/_6 n n+1/2

Exercice 50. Fonction I' (suite)

1. Démontrer que la fonction I" est de classe C* sur |0, +00[ et que pour
tout entier n > 1,

+oo
r®(z) = / e"t(logt)"t* L dA(t).
0

+oo
2. Pour tous réels a,s > 0, exprimer / t57 e d\(t) A laide de la
0

Ootsl

d)\( )=

fonction I', | puis démontrer que pour tout réel s > 1, /
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3 . +oo 9 2 F(TL + %)
3. Démontrer que pour tout entier n > 0, / e dA(t) = —
0

400 2
4. Démontrer que / e cos (at) dA(t) = \g% exp <—Z>, pour tout
0

réel a.

Exercice 51. (*)Calcul de l'intégrale de Dirichlet a l'aide d’une intégrale a
parametre.

1. Montrer que I'intégrale f0+ o %“t dt est convergente, mais que la fonc-
tion %“t n’est pas intégrable par rapport a la mesure de Lebesgue sur
R, . Montrer de plus 'équivalent & l'infini [;'" @ dt ~ %log n.

2. On pose, pour z > 0, F(x) = [ %e‘” dt. Montrer que F est

définie sur Ry, dérivable sur ]0, +o00[, avec F'(z) = — 1.

1+
3. Calculer F et en déduire la valeur de [;™° 52 dt.

Exercice 52. (*)Calcul d’intégrales lices aux intégrales de Fresnel
Le but de cet exercice est le calcul des intégrales

+oo | 1
/ eu*"du, 0<a<l
0

et d’intégrales liées.

1. On pose, pour A > 0,
+o0 .
w(A) = / e eyt du.
0

Montrer que ¢ définit une fonction continue sur [0, +o0/.
2. Montrer que ¢ est dérivable sur |0, +o00] et vérifie I'équation différen-
tielle ¢’(A) = 7%:¢()). En déduire que pour tout A > 0, on a

1

W exp(—ai atan )\)

p(A) = ¢(0)

3. Montrer que pour tout A > 0, on a
+0o0

p(0) = (1+ )\—2)04/2 exp(«i atan )\)/ e et da.
0

Poser au = x.

4. En déduire .
/ eyt du = exp(iag)F(a),
0

en particulier, comme I'(1/2) = /7,

+00 cosu +00 gin u T
du = du = /=
0 U

o Vu Vu 2

5. Calculer les intégrales de Fresnel

+00 +0o0
/ cos(u?) du et / sin(u?) du.
0 0
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Exercice 53. (*)Calcul de l’intégrale de Dirichlet
Soit a > 0. Montrer que la fonction, f : (z,y) — e *¥sin x, est intégrable sur

0,a] x [0,400[. On pose I, = /[ - [f(x,y) dxdy. Déterminer la limite
0,a]x[0,+0c0
Toosinw

dzx.

de I, quand a tend vers 4+c0. En déduire la valeur de /

0 x
Exercice 54. Rappelons que la fonction Gamma I" : R}, — R est définie
pour tout z > 0 par I'(x) = [;"*t*~le~* dt et la fonction Beta f3 : RY xR% —
R est définie pour tous z > 0, y > 0 par B(z,y) = [y t* (1 —t)¥"'dt. Pour
tous x > 0, y > 0, vérifier 'existence de §(z,y) puis montrer que :

_ I'(@)I'y)
R e

Exercice 55. Pour z > 0, on pose R(z) = [,/*° 52 du. Le but de l'exercice
est de démontrer 'identité

1. Montrer que R(z) est bien défini pour z > 0 et qu’on a en l'infini
R(xz) = O(1/z). En déduire que R est bornée. Faire une intégration
par parties.

2. ]?%) est-elle intégrable par rapport a la mesure de Lebesgue sur R, ?

oui!
3. Pour A > 0, On pose Ry(x) = [/ s2Uec=u gy,

u

(a) Justifier 'existence de Ry (x), puis montrer que pour tout z > 0 et
tout A > 0, on a

1—e @ +o0 U (\u)
Ry(z) — R(z)| < e / du,
Ra(o) — ()] < eosal = ¢ [P0 gy
ou on a posé ¥(x) = |e*(1 + z) — 1|. Faire une intégration par

parties.

(b) Montrer qu’il existe M < +oo telle que ¥(z) < M pour tout
z > 0. En déduire que pour tout x > 0, limy_,o Ry(z) = R(x).
Pour le premier point, noter que ¥ est continue, de limite 1 en
Iinfini. Enfin, appliquer le théoreme de convergence dominée.

(c) Montrer qu’il existe L > 0 tel que ¥(x) < Lz?* pour tout z > 0.
Etablir les inégalités

1+2M
WAS0 Vo>1 |Ri(z)— R(z)| < 2

VA>0 Vo<1l |[Ry(2)— R(z)] <A+ L\N+2M.

On peut noter que W(z)/z? est continue sur R* , avec des limites
finies en 400 et en 0. Pour la derniéere inégalité, on pourra écrire

/;OO U(Au) du:/xl U(Au) du+/1+00 U(Au) .

u2 u? u?
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(d) Montrer que pour tout A > 0, Rj/(g ) est intégrable par rapport a la

mesure de Lebesgue sur R, puis que

0o T x50l N
Dans un premier temps, dominer |Ry(z) — R(x)| par une fonction

intégrable. Dans un second temps, pour A < 1, dominer |Ry(z) —
R(z)| par une fonction intégrable ne dépendant pas de .

4. Montrer que pour tout A > 0, on a

+too Ry () oo ginu _

=2 / e
0 NG 0

Utiliser le théoreme de Fubini.

5. Montrer finalement que

oo R(x)
0o VT

(On rappelle que [, % du = \/E .) On pourra écrire

Vo,

oo Ry(z) /1 Ry(z) Jr/*"O Ry(z)

VIR SV N

le premier morceau se traite aisément par convergence dominée, le
deuxiéme nécessite une intégration par parties comme précédemment.

Exercice 56. Calcul de }-,~, % avec Fubini.
Calculer de deux facons différentes :

J [ A dxd
_/—1/—11+2my—|—y2 e

Exercice 57. 1. Soit ¢ une application de N dans R, Montrer que 1’on
’ d = d d
/R p(Ent([z]lw)) dX(z) = 3 ((2n +2) = (2n)7) p(n).
n=0

1
lll3

2. Soit & > 0. A quelle condition la fonction z est elle intégrable

sur le complémentaire de la boule unité ?

3. Montrer que I'application

T

frax—
[l

réalise un C* difféomorphisme de {z € R%:0 < ||z]], < 1} sur {x €
R% 1 < ||z2} et que sa différentielle est

3k — 2(x, h)x

[EdlE:

h— Df,.h =
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4. Soit a > 0. A quelle condition la fonction z — W est elle intégrable
sur la boule unité?

Exercice 58. Montrer que pour tout z € C, (1 + z/n)" tend vers exp(z)
lorsque n tend vers l'infini.

Exercice 59. On note S la boule de R? centrée en 'origine et de rayon 2,
H~ la surface inférieure de frontieére paraboloidique (elliptique) :

H™ ={(z,y,2) € R* 3z < 2 +y*}.

Pour toute partie A de R?, on note A, sa tranche de niveau z :
A ={(z,y) € R* (2,y,2) € A}.
1. Soit z € R. Montrer que

S, siz<0
(SNH), =2 siz>1
{(z,y) ER%: 32 < a? +y><4—2*} size|0,1]

2. Montrer que A*3(SNH™) = 2.

3. Le centre de gravité d’un solide homogene représenté par le borélien
borné A est le point

1
— d\®3 .
Montrer que le centre de gravité de SN H ~ est le point de cooordonnées
(0,0, — %)
4. On pose

HY ={(z,y,2) € R*; 32 > 2% + y°}.

Montrer que le centre de gravité de SNH™ est le point de cooordonnées

(0,0, %). Indication : on conseille ne pas refaire tous les calculs, de

remarquer plutét que le centre de gravité de S est 'origine.
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Chapitre 5

Lois des variables et des
vecteurs aléatoires

Rappel : si X est un espace topologique (par exemple un espace métrique),
on appelle tribu borélienne de X et on note B(X) la tribu engendrée par la
famille des ouverts de X.

5.1 Définition

Si (Q, F,P) est un espace probabilisé, on appelle variable aléatoire toute
application mesurable de (2, F,P) dans (R, B(R)), ou B(R) est la tribu bo-
rélienne de R. De méme, on appelle vecteur aléatoire toute application me-
surable de (Q, F,P) dans (R% B(R?)), ot B(R?) est la tribu borélienne de
R

On appelle loi d’une variable aléatoire X definie sur (2, F,P) la loi image
de P par X. Cette loi est notée Px Rappelons que cette loi image est une
mesure de probabilité sur (R, B(R)) définie par

VA € B(R) Pyx(A) =P(X"(A))

Par définition, X 1(A) = {w € Q; X(w) € A}. Afin de simplifier les écri-
tures, on écrit toujours {X € A} a la place de X '(A). Ainsi, on écrira le
plus souvent P({X € A}) et méme P(X € A) pour désigner Py (A).

Exemple : Soit P la mesure sur (R, B(R)) définie par P = 16_1+1d0+ 561
P est une mesure positive, de masse totale 1 : c’est donc une probabilité.
Considérons I'application X : R — R définie par Vw € R X (w) = |w|.
Comme X est une application mesurable, X est une variable aléatoire. Pour
P-presque tout w, X (w) € {0,1}. Ainsi, la loi de X sous P est

Py = P(X=0)0+P(X=1)
= P({0})do +P({~1,1})d
1 1
= —0g+ =0
%0 T 3%
Exemple : L’exemple qui suit ne paie pas de mine mais est cependant

trés instructif. Soit P la mesure sur (R, B(R)) définie par P = £0_1+ 500+ 01
On a vu que P était une probabilité. Considérons ’application ¥ : R — R
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définie par Vw € R Y (w) = w. Comme Y est une application mesurable
(1), Y est une variable aléatoire. Il est facile de voir que la loi de Y sous P
est tout simplement P. Ainsi, on voit que le probleme de 'existence d’une
variable aléatoire suivant une certaine loi se ramene a celui de I'existence de
cette loi et releve donc des théories de la mesure.

5.1.1 Fonction de répartition

Soit X un vecteur aléatoire & valeurs dans R?. On appelle fonction de
répartition de X et on note Fy la fonction définie sur R? par

Vt = (t1,...,ta) €RT Fx(t) = Px(] — o0, t1]x] — 00, t5]x] — 00, t4)
= P(X; <t1, X0 <ty...,Xqg < tg)

Théoréme 52. Si deuz variables (ou vecteurs) aléatoires ont la méme fonc-
tion de répartition,alors elles ont méme loi.

Démonstration. Si X et Y sont tels que Fx = Fy, cela veut dire que Px et

Py coincident sur les ensembles de la forme | — 0o, t1] x| — 00, ta] X] — 00, t4].
Or ces ensembles forment un 7-systéme qui engendre B(R?), donc Py et Py
sont égales. O

C’est surtout en dimension 1 que la fonction de répartition est utile, car
en dimension supérieure, ses propriétés sont plus difficiles a exprimer et les
calculs sont souvent compliqués, voire infaisables. Nous allons juste nous
contenter de donner quelques propriétés de la fonction caractéristique d’une
variable aléatoire.

Propriétés de la fonction de répartition d’une variable aléatoire
réelle

Théoreme 53. La fonction de répartition Fx d’une variable aléatoire vérifie
les propriétés suivantes

— Fx est a valeurs dans [0, 1]

— Fx est croissante sur R.

t——o00

t——+4o00
— FEn tout point, Fx est continue a droite.

— En tout point, Fx admet une limite a gauche.

Démonstration. — Le premier point découle du fait que Fx(t) est la
probabilité d’un événement.
— Sis<t,onal—o0,s C|]—o00,t], dou

Fx(s) = P(] — 00, s]) <P(] - 00,1]) = Fx(1).

— Posons pourn > 1, A, =] —o00,—n],ona A,;; C A, et N A, =02,
n>1

d'ou lim Px(A,) =Px(2&) =0.Soit € > 0: d’apres ce qui précede,

n—-+4o0o
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il existe n tel que Px(A,) < e. Comme Fx est croissante et positive,
on a

t<—n :OSFx(t)SFx(—n)Sg,

ce qui prouve que lim Fx(t) = 0.
t——o0

— Posons pour n > 1, A, =] —oo,n|, on a A, C A, et L>J1 A, =R,
nz

d'on lim Px(A,) =Px(R)=1.Soit e > 0 : d’apres ce qui précede,
n—-—+oo
il existe n tel que Px(A,) > 1—¢e. Comme Fx est croissante et majorée

par 1, on a

t>n = 1>Fx(t)>Fx(n)>1—¢,

ce qui prouve que lim Fyx(t) = 1.
t——+o00

— Soit t € R, (t,)n>1 une suite décroissante convergeant vers t. Posons

pourn > 1, A, =|—o0,t,],ona A1 C A, et N A, =]—00,t], dou
n>1

lim Fx(t,) = lim Px(A4,) = Px(] — oo,t]) = Fx(t). Comme
n—-+o0o n—-+00
cette égalité est obtenue pour toute suite décroissante convergeant vers

t, ceci prouve que la limite & droite de Fx au point ¢ est Fix(t) (cri-
tére de continuité séquentiel). Remarquons qu’on aurait pu également
utiliser des criteres analogues pour les preuves des deux propriétés
précédentes et éviter ainsi 'emploi de €.
— Toute fonction croissante admet une limite a gauche en tout point de
I'intérieur de I’ensemble de définition.
m

5.1.2 Tribu engendrée par une ou plusieurs variables
aléatoires

Soit (2, F,P) un espace probabilisé, X une variable aléatoire (ou un vec-
teur aléatoire) sur cette espace. On note

o(X) ={X"(A); A € BR)}.

Cette famille est une tribu. On dit que c’est la tribu engendrée par une
variable aléatoire X.

De la méme maniere, on appelle tribu engendrée par une famille de va-
riables (X;);er et on note o((X;);er) la tribu

o(o(X;),i € I).

Exemple : Soient X et Y deux variables aléatoires a valeurs dans N.
Alors, 'événement {X = Y} est o(X, Y )-mesurable.
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Démonstration. On a
{(X=Y} = U {X=Y}INn{X =k}
keN

= U X =k}n{y =k}

Par définition de o(X), I'événement {X = k} est o(X)-mesurable. Comme
o(X,Y) contient o(X), I'’événement {X = k} est o(X,Y)-mesurable. De
méme, 1'événement {Y = k} est 0(X,Y)-mesurable. Comme o(X,Y") est une
tribu, on en conclut que pour tout k, 'événement {X = k} N{Y = k} est
o(X,Y)-mesurable, puis que I'événement {X = Y} est o(X,Y)-mesurable.
[

5.2 Indépendance des variables aléatoires

Définition : On dit que des variables aléatoires (X;);c; sont indépen-
dantes si les tribus (0(X;));erqu’elles engendrent sont indépendantes.

Exemple : Si X et Y sont deux variables aléatoires indépendantes, alors
pour tout couple de boréliens A et B, on a

P({X € A}n{Y € B} = P(X € A)P(Y € B).

Théoréme 54. Soient (X;)icr une collection de vecteurs aléatoires aléatoires
indépendants. On suppose que X; est a valeurs dans R"™. Soient (f;)ie; une
famille d’applications telles que pour tout i, f; soit une application mesurable
de R™ dans RPi. Alors, si on pose Y; = fi(X;) les variables aléatoires (Y;)ier
sont indépendantes.

Démonstration. L’indépendance des variables aléatoires est en fait 1'indé-
pendance des tribus engendrées. Soit B € B(RP¢) un borélien. On a {Y; €
B} = {X; € f71(B)}. Comme f; est borélienne, f;*(B) € B(R™), et donc
{Y; € B} est o(X;)-mesurable. Ceci prouve que o(Y;) est une sous-tribu
de o(X;). Comme les tribus (o(X;))ies sont indépendantes, leur sous-tribus
(0(Y;))ier le sont aussi. O

Exemple : Si X,Y et Z sont indépendantes, alors ch X,Y? et Z3 sont
indépendantes.

La, nous restons un peu sur notre faim. En effet, nous voudrions pouvoir
dire aussi que ch X + Y2 est indépendante de Z3. Pour cela, il faudrait que
nous sachions que (X,Y) est indépendant de Z, auquel cas nous pourrions
appliquer les fonctions f(z,y) = chx + y? et g(z) = 23.

Par chance (!), ceci est vrai. En effet, on a le résultat suivant :

Théoréme 55. Soient (A;)icr une famille de sous-tribus de (S, F) indépen-
dantes sous P. Soient J C I et K C I disjoints.
Alors les tribus o(A;, 5 € J) et o(Ax, k € K) sont indépendantes.

Démonstration. On considere le m-systeme C défini par

C= U { N A;VzeF A, €A}

FCJ z€eF
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ainsi que le 7-systeme D défini par

D= U { N A ;VxeeF A, A}

FCK el

Si By € C, By peut s’écrire sous la forme B; = ﬂF A, ou I C Jet
xre

ouVer e FF' A, € A,. De méme, si By € D, B, peut s’écrire sous la forme
) 9 p

By= N A,oul'CJetouVereF A,e A, Ainsi

zeF’

P(BiNB,) = P( N A)

z€(FUF)
= (I P(40))( II, P(A,))
= P(Bl)P(Bz)

Comme C est un mw-systeme qui engendre o(A;, j € J) et D un m-systeme
qui engendre o(A;,j € K), le théoreme 23 permet de conclure.
O

Théoréme 56. Soit (), F,P) un espace probabilisé et X1, ..., X, n vecteurs
aléatoires. Les deux propositions suivantes sont équivalentes

1. X4,...,X, sont indépendantes.
x, =Px, ® - ®Px,

.....

Démonstration. — Preuve de 1 = 2. On pose C = [] B(R™). Soit
i=1
A=A x---xA,€C.0na

Py, x,(A) = P((X1,...,X,) € A)
= B( N {X;i €A}

= 11 Px,(4)
= (Px, ®---®Px,)(4)

Ainsi Py, x, et Py, ® --- ® Px, coincident sur un m-systeme qui

77777

n
engendre ® B(R™). Il s’ensuit que ces deux mesures sont égales.
i=1

— Preuve de 2 = 1 Soient By, ... B, quelconques tels que pour tout 7
B; soit o(X;)-mesurable : alors, pour tout 4, il existe un borélien A;
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tel que B; = {X; € A;}. On pose A =A; x---x A, €C.

P(N B) = P(N {X;€A})

ce qui prouve I'indépendance des tribus.
m

Corollaire 9. Soit (2, F,P) un espace probabilisé et X, ..., X, n vecteurs
aléatoires. On suppose qu’il existe des mesures de probabilités iy, . . ., u, telles
X, =M1 @ @ . Alors

11111

1. X4,...,X, sont indépendantes.
2. Pour tout i, la loi de X; sous P est ;. (Px, = ;)

Démonstration. Soit B un borélien.

= P((Xy,...,Xn) €Qx---xQxBxQ...Q)
= P, . x)(Qx--xQxBxQ...Q)
= (MR Quy)(2x - xQAXxBxQN...Q)
1(€2) X o X1 () X pi(B) X i1 (2) - i (€2)
pi(B
Ainsi Py, = ;. L'identité Px,  x, = 11 ®- - -®pu,. peut se réécrire Px,  x, =
Py, ® --- ® Py, et il suffit alors d’appliquer le théoréme précédent. O

=

5.2.1 Application : loi 0 — 1 de Kolmogorov

Théoréme 57. Soit S un ensemble infini et (A;)ics une famille de tribus
indépendantes sous la loi P. On pose

T = (Ak;ke S\A)

N o
ACS
T est appelée tribu de queue de la famille (A;)ien. Alors

VAeT P(A)e{0,1}.

Démonstration. Posons

A= ALQJS o(Ag; k € A).
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Il n’est pas tres difficile de voir que A est une algebre. Montrons que 'algebre
A est indépendante de la tribu 7. Soit A € Aet B € Q. Il existe A C S avec
A fini tel que A € o(Ag; k € A). Or, par définition de Q, B € o(Ay; k € A°).
Or, d’apres le théoréme B3, les tribus o(Ag; k € A) et o(Ax; k € A°) sont
indépendantes, donc P(A N B) = P(A)P(B).

Ainsi A est indépendante de 7. Comme A est une algebre, le théoreme 23
assure que o(A) est indépendante de 7. Or T C o(A), donc T est indépen-
dante d’elle méme. Soit donc A € T : on a

0=P(2) = P(AN A%) = P(A)P(A%) = P(A)(1 - P(A)),
donc P(A) € {0, 1}. O

5.2.2 Variables aléatoires indépendantes et convolu-
tions

Théoreme 58. Si deux variables aléatoires X et'Y sont indépendantes sous
P, alors Px x Py = Px.y.

Démonstration. Si X et Y sont indépendantes, alors Pxy) = Py ® Py.
Px * Py est donc la loi image de P(x yy par (x,y) — x +y. Mais la loi image
de P(xy) par (z,y) — x +y, ce n'est rien d’autre que Px,y. O

Théoréme 59. Soit u, v et x trois mesures finies sur (R?, B(RY)). On a
W*V =U*[

et
(n*v)*x = pxV*x).

Démonstration. Si une des trois mesures de la deuxiéme formule est nulle,
chacun des produits est nulle car la mesure nulle est absorbante pour le pro-
duit de convolution. Idem pour la premiere formule si 'une des deux est nulle
Sinon, posons Notons P = y(ﬁd) ® H/(I/éd) ® X(ﬁd)' P est une mesure de probabi-
lité. XY, Z Définissons sur (R?)? : X (z,y,2) = ;Y (z,y,2) = y; Z(x,y, 2) =
2,S=X+Y;T =Y + Z. D’apres 'associativité de I'indépendance, X et T
sont indépendantes, de méme S et Z sont indépendantes. On a donc

Px «Pr =Pxi7 =Psyz = Ps x Py.

Maintenant, il est facile de voir que Pr = Wu* x et que Py =
M(Rd)ly(Rd)/L * UV, d’ou (,U, * V) XX = Wk (V * X) De méme PX * Py = ]Px+y =
Py, x =Py % Py permet de montrer la premiere formule. ]

Ainsi I'ensemble des mesures finies munies de (+,*) forme un anneau
commutatif.
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5.3 Variables aléatoires discretes

On dit qu’'une loi i est discrete s’il existe un ensemble D fini ou dénom-
brable inclus dans R? tel que pu(D) = 1.
De méme, on dit qu'une variable aléatoire X définie sur un espace pro-
babilisé (2, F,P) est discrete si sa loi Px est discrete.
Ainsi, si D est un ensemble dénombrable tel que P(X € D) =Px (D) =1
et I'on pose
Vie D p,=P(X =1)

La famille (p;);ep est une famille de réels positifs vérifiant
1€D
La connaissance de D et des p; permet de reconstituer la loi de X. En
effet, on a le théoreme suivant :

Théoreme 60. Soit X une variable aléatoire discréte, et D un ensemble D
fini ou dénombrable inclus dans R tel que X (2) = D. Pour i € D, on pose
pi = P(X =1). Alors,
1. pour tout A € B(R), on a
IP)X<A) = X D

i€DNA
2. Px = > pid;.
€D
3. Px admet comme densité par rapport a la mesure de comptage sur D
la fonction f(x) définie par

e six e D
f(x)_{OSixgéD

Démonstration. On note m la mesure de comptage sur D Soit A un borélien.
{X € AN D} est réunion dénombrable disjointe des événements {X =i}, ou
1 décrit AN D. On peut donc écrire
Px(A) = P(X € A)
P(X € AAD)+P(X € AN D)
0+P(X € AnD)

= > P(X =9)
i€ AND
= > pi
i€ AND
Posons = > p;9;.
ieD
pAd) = X pidi(4)
i€D
= > piﬂA(i)
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On a d’une part

M(A) = piﬂA<i>

€D

= AZ pi]lA<i)+ AE pilA(i)
i€DNA i€ D\ A

= > pi+0

i€DNA

Comme A est quelconque, on en déduit que p = Py. D’autre part

w(A) = X plla(i)

i€D

= {)pi]lA(i) dm(i)
= TG dm()
= [ f(z) dm(z),

A

ce qui signifie que p (c’est a dire Py ) admet f comme densité par rapport &
la mesure de comptage.

]
On a la réciproque suivante :

Théoréme 61. Soit D un ensemble fini ou dénombrable, (p;)iep une famille
de réels positifs vérifiant

Zpi =1L

i€D
Alors, on peut construire un espace probabilisé (0, F,IP) et une variable aléa-
toire X sur cet espace telle que

VieD p=PX =i

Démonstration. Comme on I’a déja remarqué, le probleme d’existence d'une
variable aléatoire se ramene souvent a ’existence d’une loi. Ici,on peut prendre

=D, F=P(Q) et X(w)=w avec

P= > pi5i-

€D

5.3.1 Fonction d’une variable aléatoire discrete

Théoréme 62. La loi image py d’une loi discrete p par une application
mesurable f est une loi discréte.



74 CHAPITRE 5. LOIS DES VARIABLES ALEATOIRES

Démonstration. Soit D un ensemble fini ou dénombrable tel que (D) = 1.
f(D) est un ensemble fini ou dénombrable. Il est donc mesurable par rapport
a la mesure de Lebesgue. On a u(f(D)) = u(f~*(f(D)) > p(D) = 1 car
f7Yf(D) D D. 1l s’ensuit que f(D) est un ensemble fini ou dénombrable
dont la mesure sous jir est 1. O]

Corollaire 10. Soit X une variable aléatoire discrete définie sur un espace
probabilisé (2, F,P) et f une fonction quelconque définie sur X (). Alors,
la fonction'Y définie par

YweQ Y =f(X(w))
est une variable aléatoire discréte sur (2, F,P).

De maniere plus concise, on écrit Y = f(X).

Exemple : Soit X une variable aléatoire vérifiant X(Q) = {—1;0;1},
avec P(X = —1) =P(X =0) =P(X =1) = 3.

On pose Y = X2
On a Y (Q2) ={0;1}, avec

Y =0} ={x =0

et
{Y=1} ={X=1}u{X =-1},
doi
P(Y =0) = F(X =0) =,
et
]P’(Yzl):]P(le)+IP(X:—1):;Jr;:;

5.4 Variables et vecteurs aléatoires a densité

On dit qu’une loi p est a densité (sous-entendu par rapport a la mesure
de Lebesgue) s’il existe une fonction mesurable f qui soit une densité de u
par rapport a la mesure de Lebesgue.

Ainsi, si f est une densité de la loi u, on a pour tout borélien A

u(A) = [ fw)drw).

Exercice : Montrer que si f est la densité d'une loi, alors A(f < 0) = 0.
Evidemment, si f est la densité d’une loi, on a

= u(RY) = [ Jw)dr@).

R4

Réciproquement, si f est une fonction mesurable, positive A presque par-
tout et d’intégrale 1, u = f.\ est une mesure de probabilité admettant f
pour densité.

Ainsi, on dit qu’'une variable (ou un vecteur) aléatoire X est a densité si
sa loi Py est a densité.
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5.4.1 Premieres propriétés

Soit X une variable aléatoire de densité f. f a les propriétés suivantes :
— Va,beR a<b—= Pa<X<bh)=Pa<X<b)=Pla<X<
b) =Pla < X <b) = [,y [(x) d\(2).

—VaeR Pla<X)=Pla<X)=Jj, 00 f(@) d\(z).

—VaeR Pla>X)=Pla>X)=J_qf(x)d\z)

— Jef(2) dA(z) = 1.

Remarquons que pour montrer qu'une fonction f positive est une densité

de la variable aléatoire X, il suffit de montrer que pour tout ¢ réel, on a

Fe(t) = [ f@) dA@).

En effet, en faisant tendre ¢ vers 'infini, on obtient que 1 = [; f(z) dA\(x),
et donc f est la densité d'une variable aléatoire Y. Mais X et Y ont méme
fonction de répartition, donc méme loi, f est la densité de la loi de Y, c’est
donc aussi la densité de la loi de X.

5.4.2 Densités et lois marginales

Théoréme 63. Soit (2, F,pn) et (U, F', 1) deux espaces mesurés. On sup-
pose que la loi v sur (2 x Q. F @ F') admet une densité h par rapport a
w@ . Alors la loi image v, de v par lapplication

T:OxQ = Q
(v,2') —ux

admet comme densité par rapport a p la fonction f définie par f(z) =
Jor Bz, 2")dp! (2").
Démonstration. Soit B € F

ce qui prouve le résultat. O

Théoréeme 64. Soit X un vecteur aléatoire a valeurs dans R™ et Y un vecteur
aléatoire a valeurs dans RP définis sur le méme espace probabilisé (Q, F,P).
Si h(z,y) est une densité de (X,Y') par rapport a la mesure de Lebesque sur
R™? alors X admet la densité f(x) = [gp h(z,y)dN(y), tandis que

Y admet la densité g(y) = Jgn h(z,y)d\"(x).
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Démonstration. Le diagramme commutatif ci-dessous traduit que
X =70 (X,Y).

(X,Y)
Q,F,P) — (R"xR",BR") @ B(RP),Pxy))
X\, I
(R”’B(R”),PX)

Il s’ensuit que Py est la mesure image de P(xy) par 7. Comme h(z,y)
est la densité de (X,Y") par rapport & A" @ AP = \"*?_ la densité de X est

bien f(x) = [g» h(x,y)dN(y), On procede de méme pour calculer la densité
de Y. O

5.4.3 Indépendance et densités

Théoreme 65. Soit X un vecteur aléatoire a valeurs dans R™ et Y un vecteur
aléatoire a valeurs dans RP définis sur le méme espace probabilisé (Q, F,P).
On suppose que X admet une densité f et Y une densité g. St X etY sont
indépendants, alors le vecteur aléatoire (X,Y") admet la fonction h(x,y) =
f(x)g(y) comme densité.

Démonstration. Comme X et Y sont indépendantes, sous P, on a Pxy =
]P)X X ]P)Y- Ainsi

Pxy = Px®Py

= A" ® g\
(z,y) = f(x)g(y))A" @ AP
= hA"tP,

ce qui montre bien que (la loi de) (X,Y) admet h comme densité. O

Théoréme 66. Soit X un vecteur aléatoire a valeurs dans R™ et Y un
vecteur aléatoire da valeurs dans RP définis sur le méme espace probabilisé
(Q, F,P). On suppose que (X,Y) admet une densité hy qui s’écrive sous la
forme hi(x,y) = fi(x)g1(y), ot f et g sont des fonctions positives. Alors, X
et Y sont indépendantes; X admet comme densité par rapport a la mesure
de Lebesgque sur R™ la fonction

_ fi(z)
Jon fr(2') dX"(2)

f()

et Y admet comme densité par rapport a la mesure de Lebesque sur RP la
fonction

_ gl(y)
Jro 91(¥') dXNP(y')

Démonstration. Posons A = [g. fi(z)d\"(x) et B = [g» g1(y)d(AP)(y). Comme

9(y)
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f1 et fy sont positives, on a A > 0 et B > 0. Comme h est une densité, on a
1 = / Bz, y)d(N" @ NP)(z,
[ by © N ()
= [ h@a@d @ N (,y)
R" xRP

= ([ A@d @) aw)d))
AB

On en peut donc dire que A et B sont tous deux strictement positifs. Ainsi les
fonctions f et g sont bien définies. Elles sont positives, et, par construction,
chacune d’entre elle admet 1 comme intégrale par rapport a la mesure de
Lebesgue. Ainsi u = fA" et v = gA\P sont des mesures de probabilité.

Comme dans le théoréme précédent, la densité de p ®@ v = est h(x,y) =
F(2)g(y). Done h(z,y) = f(2)g(y) = L 9L — A@RG _ p, (5 1),

On en déduit P(xy) = p ® v.

Il suffit d’appliquer le corollaire @ pour conclure.

5.5 Variables et lois discretes classiques

5.5.1 Indicatrice d’un événement

On rappelle que pour A C Q, l'application 14 (appelée indicatrice de A)
est définie sur €2 par
lsize A

ﬂA(m)z{oSimA

14 est une variable aléatoire a valeurs dans {0;1}.

5.5.2 Masse de Dirac

On appelle masse de Dirac en un point x € €2 la mesure 9, définie par

lsize A
5I(A)_{Osix§é/1

C’est bien une loi car elle est positive et 9,(£2) = 1.
Remarque : Si € est un groupe abélien 6,4, = 0, * 0, = 0, * 0.

5.5.3 Loi de Bernoulli

On appelle loi de Bernoulli de parametre p la loi = (1 — p)do + pd.
Ainsi, on dit qu’une variable aléatoire X suit la loi de Bernoulli de para-
metre psionaP(X =1)=pet P(X =0)=1—p.
Remarques importantes :
— Pour tout événement A, 14 suit la loi de Bernoulli de parametre P(A).
— Réciproquement, si une variable aléatoire X suit une loi de Bernoulli,
elle vérifie X = Ix_;.(Réfléchir un peu...)
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Ainsi les variables aléatoires qui suivent des lois de Bernoulli sont exactement
les indicatrices d’événements.

5.5.4 Loi uniforme sur un ensemble

Soit & C €2 un ensemble fini. On appelle loi uniforme sur F la loi définie
sur P(Q2) par
P) — [0,1]
|ANE|
|E]

Ainsi, une variable aléatoire X suit la loi uniforme sur F si I'on a

A

1
|E|
Exemple : La variable aléatoire X représentant le résultat du lancer
d’un dé non truqué suit la loi uniforme sur 'ensemble {1,2,3,4,5,6}.

Vie B P(X=ux)=

5.5.5 Loi binomiale

On appelle loi binomiale de parameétres n et p et on note B(n, p) la loi de
la somme de n variables de Bernoulli indépendantes de méme probabilité p.

Ainsi B(n,p) = (Ber(p))™

Théoréme 67. B(n,p) charge les entiers {0,...,n}. Plus précisément, on a

n
e (0n) Blnn)(() = () )oHa -
Démonstration. Posons u = B(n,p). On a

po = (Ber(p))™
= ((1=p)do + (pér)™

Comme ’ensemble des mesures positives munie de (+,*) est un anneau com-
mutatif, la formule du binéme de Newton s’applique et 1’'on a

po= ((1—=p)do+ pd)™"

= 5 ()= gy
. (”) ()" 5 (5(61))
=0 \k P

— - n n k sx(n—Fk) xk

= kgo <k>p o *(5

= kzizo <Z>p n k50 % 5k

o n n n k

N I;::O <k>p O
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Corollaire 11. Soit Ay, ..., A, n événements indépendants de méme proba-
bilité p. On pose

X =31,
k=1
Alors X suit la loi binomiale de paramétres n et p .

Remarque : X est le nombre de A; qui sont réalisés.
Exemple : On lance n fois une piéce de monnaie équilibrée. Le nombre
X de "pile" obtenus suit une loi binomiale de parametres n et %

5.5.6 Loi géométrique

On dit qu'une variable aléatoire X suit la loi géométrique de parametre
psil’on a
Vk e N* P(X =k)=p(1—-pF"

Théoréme 68. Soit (A;)ien+ une suite d’événements indépendants de méme
probabilité p > 0. On pose

X(w)=inf{k e N* we A}
Alors X suit la loi géométrique de paramétre p . De plus
VkeN Fx(k)=1-(1-p)"

Démonstration.

X >kt = N AS.
{ } ie{l,...k} "

Comme les A; sont dans F, les A{ le sont aussi, et donc comme on peut
I'écrire comme intersection finie d’éléments de F,{X > k} est dans F, et
donc, par passage au complémentaire

{X <k} eF.
En utilisant I'indépendance des (A;), on obtient
P(X > k)= (1—-p)F
Comme
{X =+o0} = kgl {X >k},
on obtient, par continuité séquentielle décroissante
P(X = +o00) = kETmP({X > k}) =

. ok

Ainsi X est bien une variable aléatoire, et I'on a
VkeN" P(X =k)=P(X >k-1)-P(X > k) = (1-p)" ' —(1-p)F = (1—p)'p
De plus
VkeN Fx(k)=PX<k)=1-PX>k)=1-(1-pF
]

Exemple : On lance une piece de monnaie équilibrée jusqu’a obtention de
ile". Le nombre de lancers effectués suit une loi géométrique de parameétre =.
"pile". L bre de 1 ffect t | t d t ;
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5.5.7 Loi de Poisson

On dit qu’une variable aléatoire X suit la loi de Poisson de parametre

A>0silona i
_,\)\7

k'
La construction de telles variables est bien possible car e_)"\k—f >0et

VEeN P(X=k)=e

+o0o )\k
Ze"\g e et =1
k=0 :

5.5.8 Loi hypergéométrique

La loi hypergéométrique H (N, n, k) modélise le phénomeéne suivant : on
tire au hasard k individus dans une population de N individus, et I’on compte
le nombre d’individus possédant une certaine particularité, sachant qu’il y
a exactement n personnes dans la population totale qui possédaient cette
particularité.

De maniere théorique, la loi hypergéométrique est la loi image de la loi
uniforme sur Q = B(N, k) par 'application

X:B(N,k) — N
w — Xw)=[1,...,n})Nuw|

Ainsi pour i € {0, ..., min(n,k)}, on a

n\[{N—n
.y = L) (N)
(%)
Démonstration. Notons P la loi uniforme sur 2. On a
H(N,n,k)(i) =Plw € 9),
ou S ={we B(N,k);|{1,...,n} Nw| = i. L’application

B({1,...,n}N,i) x B{n+1,...,N},k—i) — S
(A,B)— AUB

est une bijection, donc

S| = |BU1,... .n}N, i) x BUn+1,..., N}k —i)| = (”) (i:;‘)

7

Comme P est la loi uniforme sur 2, et que |Q| = (JZ), le résultat s’ensuit. [J

5.6 Lois a densité usuelles

5.6.1 Loi uniforme sur un compact de R?

On dit qu’'une variable aléatoire X suit la loi uniforme sur un compact K
de R? si elle admet la densité
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5.6.2 Loi uniforme sur un intervalle

On dit qu’une variable aléatoire X suit la loi uniforme sur l'intervalle
[a, b] si elle admet la densité

>—>71 Ty p1()
x ab (X
b—a fa.0]

5.6.3 Loi gaussienne de paramétres m et o

Soit m € R et 02 > 0. On dit qu'une variable aléatoire X suit la loi
gaussienne N'(m, 0?) de parametres m et o2 si elle admet la densité

1 (x —m)?

T 7\/%0 eXp(_7202 ).
On emploie également parfois le mot "normale" a la place de "gaussienne" :
ces deux mots signifient exactement la méme chose. gamma On dit qu’une
variable gaussienne est centrée lorsque m = 0.
On dit qu'une variable gaussienne est réduite lorsque o2 = 1.

Quelques résultats qui seront prouvés ultérieurement : si X ~ N'(m,o?),
alors aX + b ~ N(am + b,a*c?). En particulier, si X ~ AN (m,o?), alors
Xom L N(0,1); et si X ~ N(0,1), alors 0X 4+ m ~ N (m,0?).

Densité de la loi normale N (0, 1)

0.4 T T T T wz T
\/%exp(—g)

0.35

0.3 i
0.25 | i
0.2 ¢ i
0.15 i
0.1 ¢ i

0.05

5.6.4 Loi exponentielle de parametres a

Soit a > 0. On dit qu'une variable aléatoire X suit la loi exponentielle de
parametres a si elle admet la densité

x — aexp(—ax)lg+(x).
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Densité de la loi exponentielle de parametre 1
1 T T T

et

5.6.5 Lois de Cauchy

Soient a € R,b > 0. La loi de Cauchy C(a,b) admet comme densité par
rapport a la mesure de Lebesgue :
1 b

xi_);(x—a)Q—i—bQ'

Densité de la loi de Cauchy C(0,1)
0.35 T T T 1 1 T

T 1422

0.3

0.25

0.2

0.15

0.1

0.05 _

0
-1.5 -1 -0.5 0 0.5 1 1.5

5.6.6 Lois Gamma

Soient a et A\ des réels strictement positifs. On appelle loi Gamma T'(a, \)
la loi dont la densité par rapport a la mesure de Lebesgue est
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['(a)

ou I'(a) est la valeur au point a de la fonction I', définie par

x 27 e Mg oo (),

['(a) :/ % te™" da.
R+

On dit parfois que a est le parametre de forme et A le parametre d’échelle
de la loi. En effet, on montrera plus loin que si X ~ I'(a, A), alors pour tout
@ >0,o0na iX ~ I(a, A\p).

On rappelle quelques propriétés classiques de la fonction I' qui seront
utiles dans la suite :

— Va>0 T(a+1)=al(a).

— VneN T'(n+1)=nl!

La preuve de ces deux propriétés sera vue en exercice.

Densité de la loi Gamma I'(2,1)
0.4 T T T T

0.35
0.3
0.25
0.2
0.15
0.1

0.05
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5.7 Exercices sur les lois des variables aléa-
toires

Exercice 60. Soit s > 1. On dit que X suit une loi ( de parameétre si 'on a

1 1
VneN" P(X=n)=——+—,
K== o
ou l'on a posé
+o00 1
C(S):n—lﬁ

Soit donc X suivant une loi ¢ de parametre s. On tire Y au hasard — c’est a
dire avec équiprobabilité — entre 1 et X.
1. Pour n,k € N*, calculer P(Y = k| X =n).
2. On pose Z = % Montrer que la fonction de répartition F; est stric-
tement croissante sur [0, 1].
3. Soient p,q deux entiers positifs premiers entre eux, avec p < ¢. Cal-

culer P(Z = 2).

4. On rappelle que p(n) désigne le nombre d’entiers entre 1 et n qui sont
premiers avec n. Déduire de ce qui précede une preuve probabiliste de
I'identité

= ¢(n)

2 = ()

C(s+1)

n=1

Exercice 61. Donner un exemple de familles d’événements C et D telles que
— VYAeC VBeD PANB)=PAPB).
— les tribus ¢(C) et o(D) ne sont pas indépendantes.

Exercice 62. Donner un exemple de deux lois distinctes sur (2, F) coinci-
dant sur un systeme C engendrant F.

Exercice 63. On choisit de maniere uniforme sur [0, 1] un réel Y. Quelle est
la probabilité pour que le polynome

plr)=2*+2+Y
ait des racines réelles ? des racines distinctes ?

Exercice 64. Dans le segment [AB] de longueur 1, on choisit au hasard un
point M. Quelle est la probabilité pour que 'on ait AM.MB > % ?

Exercice 65. Soient Xy,...,X,,,... des variables aléatoires indépendantes
suivant la loi uniforme sur [0, 1]. On pose M,, = max (X3, ..., X,). Déterminer
la fonction de répartition de M,,. Montrer que M,, admet une densité que 1’on
déterminera.

Exercice 66. Soient Xi,...,X,,... des variables aléatoires indépendantes
suivant la loi uniforme sur [0, 1]. On pose M,, = max(Xy,...,X,) et m, =
min(Xy,...,X,). Montrer que M,, et 1 — m,, ont méme loi.
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Exercice 67. Soit X une variable aléatoire suivant la loi B(2n,1/2). On
pose Y = | X — n|. Déterminer la loi de Y.

Exercice 68. Soit (X,Y") un vecteur aléatoire suivant la loi uniforme sur le
rectangle [—1,2] x [—1, 1]. Montrer que

1
B(1-Y >2|X]) = 3.

Exercice 69. Pour n entier strictement positif, on note A,, = nN*. Notons
P I'ensemble des nombres premiers positifs et 7 la sous-tribu de (N*, B(N*))
engendrée par les (A,),ep. Pour w € N*, on pose

F(w) =
( ) pEP;d divise w
1. Montrer que 7 = o(X).
2. Déterminer le plus petit ensemble 7-mesurable contenant 1980.
3. Montrer que A, est T-mesurable si et seulement si n n’est divisible
par aucun carreé.
4. On munit (N*, B(N*)) de la mesure de probabilité ¢ de parametre s,
c’est a dire que
1
Vn e N* P({n}) = —
(s)

1
ne’

ou l’'on a posé

Montrer que P(A4,) = . A quelle condition les événements A, et A,,
sont-ils indépendants sous la loi P?

5. Soit N' = {w € N* Agest T — mesurable} Montrer que N' =
N AS,, puis que 0 < P(N).

peEP
Exercice 70. 1. Soit (A,,),>1 une suite de tribus indépendantes. Mon-
+oo
trer que la tribu Q = kﬁl o(A;;i > k) est triviale.
2. Soit (A, )n>1 une suite d’événements indépendants. Soit A I’événement

“ une infinité de A; se produisent. Montrer que P(A) ne peut valoir
que 0 ou 1

Exercice 71. Démontrer les propriétés de la fonction I' laissées en exercice :
— Ya>0 I(a+1)=al(a).
— VneN T'(n+1)=nl!

Exercice 72.

Queue de la gaussienne
Soit X une variable aléatoire suivant la loi normale A/(0, 1). On pose ¥ (z) =
P(X > z) =1— Fx(z). Montrer 1”équivalent en 'infini

1 1 22

\I[(.T) ~ ﬁme_%
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Exercice 73. La tradition veut que 'Epiphanie soit I'occasion de « tirer
les rois » : une feve est cachée dans une galette, découpée entre les convives
et la personne qui obtient cette feve devient le roi de la journée. Lorsque le
premier coup de couteau est porté sur la feve, ¢’est la consternation! Qu’elle
est la probabilité de cette malheureuse issue ?
Hypotheses et simplifications : on admet que la galette est circulaire, de rayon
unité, et que la féve est aussi circulaire, le rayon r. Enfin, on suppose que
— la position du centre de la feve suit la loi uniforme sur le disque de
rayon 1 — r ayant le méme centre que la galette
— le coup de couteau est un rayon du disque représentant la galette
Application numérique avec une une feve de 2,7 centimetres de diametre dans
une galette de 23 centimetres de diametre achetée ce matin.

Exercice 74. Soient (X7, ... X,,) des variables aléatoires indépendantes telles
que pour tout ¢ entre 1 et n X; suit la loi exponentielle £();). On note
m =inf(Xy,..., X,) et N =inf{i > 1; X; = m}.

1. Montrer que P(3(i,j) e N* 1<i<j<n;X;=X,;)=0.

2. Montrer que pour tout ¢ entre 1 et n

P(T > t,N =) :IP’( Ll {t< X < Xj}>
J#i
B /]Rn ]l]tv""oo[(xi) 1§1J_'[§n ]]190@',-&-00[(‘7‘1]') jI:I1 )\je_AjIj d)‘®n(‘r17 ce ,Z‘n>
J#i n

3. On pose A = Y A;. Montrer que P(T" > ¢,N = i) = 3 exp(—\t).
j=1
Appliquer le théoreme de Fubini.

4. Montrer que T et N sont indépendantes et préciser leurs lois.

Exercice 75. Soit n un entier naturel. On considere X une variable aléatoire
exponentielle de parametre 1 et Y une binomiale B(n, %) On suppose que X

et Y sont indépendantes.

Montrer que Z = YLH est une variable a densité et déterminer sa densité.



Chapitre 6

Espérances et calculs

6.1 Quelques rappels sur la construction de
I’espérance

Définition Si X est une variable aléatoire intégrable définie sur (92, F,P),
on appelle espérance de X et on note EX le réel défini par

EX — /QX(w) dP(w).

Remarque : En toute rigueur, il faudrait écrire Ep.X.
Définition On note £'((Q, F,P)) I'ensemble des variables aléatoires inté-
grables sur (Q, F,P).
Définition Si X = (Xi,...,X,) est un vecteur aléatoire dont toutes les
composantes sont intégrables, on note EX le vecteur (EX7, ..., EX,,).

6.2 Quelques propriétés

— L' est un espace vectoriel.

— VX, Ye/ll E(X+Y)=EX+EY.

— VX e/l VaeR EaX =daEX.

— VAe F E(,) =P(A).

— La variable aléatoire X est intégrable si et seulement si | X| est inté-

grable.
—VXel! PX>0)=1=EX >0
— VX el PX<a)=1=EX <a.
— VX el P(X>b)=1=EX >0
— VX el PX=a)=1=EX =a.

— VX el P(X|<a)=1=E|X|<a.
— Soient X,Y deux variables aléatoires vérifiant 0 < X < Y. Si Y est
intégrable, alors X est intégrable.
— VX, Ye/l'! PIX<Y)=1=EX <EY.
Vocabulaire : on dit qu'une variable aléatoire X est centrée si EX = 0.
On définit de méme ce qu’est un vecteur aléatoire centré.

87
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6.3 Application : Formule de Poincaré et in-
égalités de Bonferroni

La formule de Poincaré est 'analogue de la formule du méme nom du
cours de dénombrement. On peut considérer que c’en est une généralisation.

Théoréme 69 (Formule de Poincaré). Pour tous événements Ay, As, ..., A,
sous la probabilité P

1@( ¥ Ai> _ S (~)ER(ep4;) (6.1)
=1 BeP({1,...n})\@

= Y P(A4)— > P(ANAL)+-- (6.2)

i=1 1<ii<ig<n

CHEDM Y (A 0N A+ (63)

1< <ia<... <1 <n

o (=D)"HPAL N N AY). (6.4)
Exemple : Pour n = 3, on a

P(AyUAYUA3) = P(A4)) +P(Ay) + P(A43)
—P(A; N Ay) —P(Ay N A3) —P(A; N A3)
+P(A; N Ay N Ay).

Pour prouver la formule de Poincaré, on va utiliser un lemme qui va nous
permettre d’obtenir des encadrements de la probabilité d’une réunion.

Lemme 4. Soit (2, F,P) un espace probabilisé ; (A,)zcr des événements.
Pourn > 1, on pose

Vo = Pn(ZﬂAx - 1)]]UzeIAa;7

zel

ot (Py)r>0 est la suile de polynomes définie par

Py=1
Pl :X
P2:X();_1)

P, = X(X—l).k.!(X—k—&-l)

Ainsi pour n >k Pi(n) = (Z) tandis que Pi(n) =0 pour 0 < n < k.
Alors

CPU A)= S (—1)kH! P( N0 A)+(—1)"EV. (6.
Vn € N (mel 2) k;( ) JGBZM (er 2)+(—1)"EV, (6.5)

Démonstration. Il suffit de montrer

Vne N 1 =
U 4,
xel

—1)kHt 1 -1V, 6.6
( ) JeBZk(I) xng Az—i_( ) ( )

ol
It



6.3. APPLICATION : FORMULE DE POINCARE ET INEGALITES DE BONFERRONIS9

Soit w € . Siw ¢ UgerA,, les deux membres de 1’égalité sont nuls. Sinon,
posons N =3, ;s (w) ={z € we A, }|

Ona ] 1y, =1sietseulementsi J C{zelwe A}
zeJ

JEBR(I) z€J
On doit donc montrer

1= SO UFRN) £ (<) Pu(N — 1),
k=1

ce qui est équivalent &

n

> (=1)FP(N) = (=1)"Pu(N = 1).

k=0
Pour conclure, deux preuves possibles :
M¢éthode 1 : On va montrer par récurrence sur n :

n

> (D P(X) = (=1)"Po(X = 1)

k=0

Pour n = 0, c’est vérifié. Pour passer de n a n+ 1, on a

n+1

SCFRX) = S (CDFPUX) 4 (—1)™ P (X)

k=0 k=0
(=D)"Po(X = 1) + (=1)"" Ppyr (X)
= ( 1)n+ (Pn+1(X) - Pn(X - 1))
1
(—

D XPUX = 1) = P(X — 1))

X—(n+1)P,(X —-1)
n+1
= (—1)" Py (X — 1)

_ (_1)n+1 (

M¢éthode 2 : De maniere équivalente, il faut montrer que

S (1) EB(N) = By(N — 1),

k=0

Mais on reconnait en Y-7_,(—1)""*P,(N) le coefficient en x™ de la série entiere
sur B(0,1) :

(g Pk(N):ck> (f(—l)’“z’f)

k=0
- (1))
= Z €T
o \ Kk 1+
1
= (1 N
+ x) 2
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dont le coefficient en 2™ est précisément P, (N — 1), d’ou 'identification des
termes. N

Ensuite, il suffit d’intégrer (68) pour obtenir (E33).

Démonstration. En prenant I = J = {1,...,n} dans le lemme précédent, on
obtient
1]
P( U A,)= —1)F*! P( N A,),
( xel ) k=1 ( ) Je%([) ( zeJ )
car V,, est identiquement nulle. Cela démontre la formule de Poincaré. O

Théoréme 70 (Inégalités de Bonferroni). Soit (2, F,P) un espace probabi-
lisé; (Ay)zer des événements. Soit n € N*,
Alors,

— Sin est impair, on a

P(U A)< ¥ (DY S P( N A,) (6.7)

xel k=1 JeBL(I) zeJ

n

— Sin est pair, on a

P(U A)> ¥ (D" S P( N 4,) (68

zel k=1 JeB(I) zeJ

n

Démonstration. 11 suffit d’appliquer le lemme B en remarquant que V,, est
une variable aléatoire positive, et que donc son espérance 1’est aussi. O

6.3.1 Application aux probleme des dérangements

On reprend le probleme des dérangements, qui avait été étudié en exercice
au chapitre B par des méthodes d’algebre linéaire. On note €2 = §,, I'’ensemble

des permutations de I = {1,...,n}, que 'on munit de la loi uniforme. On

cherche donc a calculer p,, = %, ou d, est le nombre de permutations de S,

sans point fixe :
d,=Card{ceS,;Viel,....n o(i)#i}).

(On pose dy = 1.) Pour i entre 1 et n, posons A; = {o(i) = i}. Ce que nous
cherchons, c’est

po=P( N A9 =1-P( U 4),
d’ou, avec la formule de Poincaré

Pa=1= (=DM > P( N A,).

k=1 JeB(I) zeJ

Mais il est facile de déterminer ﬂj A, : ce sont les permutations de I qui
IS

fixent les points de J et qui permutent les points de I\J : ce sous-ensemble
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de permutations de S, est en bijection avec S(I\J); il est donc de cardi-

nal (n — k)!, d’ou, avec '’hypotheése d’équiprobabilité, P( ﬂJ A,) = w
Te ’
Finalement,
" —k)!
o= 1= (=) (n
p kz::l( ) JeBZk(I) n!
" n\ (n —k)!
= 1 —1)*
)
NS,
= K

6.4 Théoremes de transfert

Théoréme 71. Soit X une variable aléatoire dont la loi Px admet une den-
sité f par rapport a la mesure m. Soit g une fonction mesurable.
Alors, g(X) est intégrable si et seulement si

/ lg(2)|f(x) dm(z) < +oo.

Si cette intégrale est finie, on a alors

Elg(X)] = [ lg(@)f(z) dm(z) < +oo.
Démonstration. D’apres le théoreme de transfert

LlaX@)ldbw) = [ lg(@)| dPx(a)
= [lg@)f(x) dm(a)

De méme, si cette quantité est finie, le théoreme de transfert nous dit encore
que

[ oX@)dp) = [ g(x) dPx(2)
= [ 9@)f(@) dm(x)

]

6.4.1 Calcul de ’espérance d’une variable aléatoire dis-
crete

Théoreme 72. Soit X wune variable aléatoire discrete, et D un ensemble
fini ou dénombrable inclus dans R tel que X(2) = D. Soit g une fonction
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quelconque de D dans R. Alors, la variable aléatoire Y = g(X) est intégrable
si et seulement st

2 1g(@)|pi < +oo,
€D

ot l'on a posé p; = P(X =1i). Si cette somme est finie, on a alors
EY =Eg(X) = > g(i)p;.
i€D
Démonstration. D’apres nos hypotheses, Px admet une densité par rapport

a la mesure de comptage de support D : c’est la fonction ¢ — p;. Il suffit
donc d’appliquer le théoreme [l en prenant pour m la mesure de comptage

sur D et pour f :
Dz size D
€Tr) =
/(@) {OsixgéD
On a alors

[ lg@)f() dm(z) = 3 lg@)1f (@),

xeD
et, si cette somme est finie :

9@ (@) dm(@) = 3 g@)f (@)

zeD

]

Corollaire 12. Soit X une variable aléatoire discréte, et D un ensemble fini
ou dénombrable inclus dans R tel que X(Q2) = D. Alors, X est intégrable si
et seulement si

€D

ot l'on a posé p; = P(X =1). Si cette somme est finie, on a alors

i€D

Démonstration. 1l suffit d’appliquer le theoreme précédent avec g(z) = x. O

6.4.2 Calcul de l'espérance d’une variable aléatoire a
densité

Voici maintenant le théoreme de transfert pour les variables a densité

Théoreme 73. Soit X une variable aléatoire admettant la fonction f comme
densité, et g une fonction continue par morceaux définie sur X (). Alors, la
variable aléatoire Y = g(X) est intégrable si et seulement si

[ lg(@)f (@) dA@) < +oo.

Si cette intégrale est convergente, on a alors

EY = Bg(X) = [ g(x)f(x) dA(x).
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Démonstration. 11 suffit d’appliquer le théoreme [1 avec pour m la mesure
de Lebesgue. O

Corollaire 13. Soit X une variable aléatoire admettant la fonction f comme
densité. Alors, X est intégrable si et seulement si

[ Jolf(z) dA(@) < +oc.
Si cette intégrale est convergente, on a alors
EX = [ xf(z) dx.
R

Démonstration. 1l suffit d’appliquer le theoreme précédent avec g(z) = x. O

Remarque importante : Si la densité de X est paire et que X est
intégrable, alors EX = 0.

Démonstration. On a
EX = / of(x) d\ (@),
R

et avec le théoreme de changement de variable,

EX = / —af(—z) dA(z) = / —af(x) d\(x),
R R
par parité de f. D’ou finalement EX = —EX, c’est a dire EX = 0. m

6.5 Convexité

6.5.1 Rappels sur la convexité

On dit qu'une fonction est convexe sur 'intervalle I si pour tous z,y dans
Tet0e€[0,1],ona f(Ox+ (1—0)y) <0f(x)+ (1—0)f(y).
Lemme 5. Six < z <y, alors il existe 0 €]0,1] avec z = 0z + (1 — 0)y.

Démonstration. Facile. O

Lemme 6. Les pentes d’une fonction convexe sont croissantes : si hy < ho
avec x,x + hy,x + hy dans I, avec hy et hy non nuls, alors

fx+h) = f(x) f(x+hy) — f(x)
hl h2 '

Si x n’est pas la borne droite (resp. gauche) de I, p, admet une limite a droite
en 0 : c’est la dérivée a droite (resp. a gauche) de f en x.

px(hl) = < pm(h2) -

Démonstration. Premier cas : hy et hy sont positifs. On applique le lemme
avec z = x + hy et y = x + hy et on utilise la définition de la convexité.
Deuxieme cas : hy et ho sont négatifs. Méme chose que dans le cas précédent,
avec ¥’ = x + hy, 2/ = v+ hy, ¥y = x. Dernier cas : hy < 0 < hy dans ce
cas py(h1) < pr(max(hy, —hs)) et p,(min(hg, —h1)) < ph(hy) d’apres ce qui
précede, donc il suffit de vérifier que p,(—h) < p.(h), ce qui découle immé-
diatement de la convexité. Ceci acheéve la preuve de la croissance. L’existence
de la limite est une conséquence du théoreme sur les fonctions croissantes
minorées a droite pour la limite a droite, et croissantes majorées a gauche
pour la limite a gauche. O
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Lemme 7. Soit f convexe avec f(x) = f(y) = 0. f est négative sur [x,y],
positive a [’extérieur.

Démonstration. Si z est entre x et y avec z = fz + (1 — 0)y, alors f(z) <
0f(z)+ (1 —0)f(y) <0. Sinon, 'inégalité

0f(a)+(1—=0)f(b) = f(fa+ (1-0)b)

entraine que si de trois nombres, le terme médian et un autre ont une image
nulle, le troisieme doit avoir une image positive. ]

Lemme 8. On appelle corde portée par x et y la droite passant par (x, f(x))
et (y, f(y)), d’équation £(t) = %(t —x)+ f(z). Si f est une fonction
conveze, la fonction f est en-dessous de la corde entre x et y, au-dessus a

lextérieur.

Démonstration. 1l suffit d’appliquer le lemme précédent a ¢t — f(t) —£(t) qui
est convexe. O

Lemme 9. Si [ est une fonction convexe et si x n’est pas la borne droite de
I, alors pour tout t dans I, f(t) > f(x)+ fi(z)(t — x).

Démonstration. Soit h > 0 Pour tout ¢ qui n'est pas dans |z,z + h[, la
propriété de la corde donne

flz+h) - [f(z)
h

ft) = (t =)+ f(x) = fa(x)(t —2) + f(2),

ce qui est I'inégalité que I'on veut. Mais pour tout ¢ il existe h > 0 tel que ¢
qui n’est pas dans |z, z + h[, d’ou le résultat. ]

Théoréme 74. Si f est une fonction dérivable sur lintervalle ouvert I et
que ' est croissante sur I, alors f est convexre sur I.

Démonstration. Soient x,y,z € I, avec x < y. Soit 6 €]0,1[. On pose z =
Oz + (1 —0)y. En appliquant deux fois 'inégalité des accroissements finis, on

a
F@) = 1E) iy H0) =)

x—z y—z

en prenant les membres extrémes, on a
f@) = f2) _ f) ~ 1)
1=0)z—y) = Oy—=z)
(f(2) = f(2))6 < (1 = 6)(f(y) — f(2)),

ce qui donne le résultat voulu en réarrrangeant les termes. O

6.5.2 Inégalité de Jensen

Théoreme 75. Soit X une variable aléatoire intégrable a valeurs dans l’in-
tervalle I. Soit f une fonction convexe de I dans R. Alors

JEX) <Ef(X).
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Démonstration. Soit ® ’ensemble des fonctions affines ¢ telles que
vrel o)< f(a).
Soit ¢ € ®. On a presque stirement

p(X) < f(X).
On a donc Ep(X) < Ef(X). Mais comme ¢ est une fonction affine, Ep(X) =
e(EX). Ainsi,
Vped pEX)<Ef(X),

Prenons alors ¢(t) = f(EX)+ f3(EX)(t —x) (ou p(t) = f(EX)+ f, (EX)(t -
x) si EX est 'extrémité a droite de I). D’apres le lemme 8, ¢ € ®, ce qui
donne

J(EX) < Ef(X).
O
Pour retenir quel est le sens de 1’égalité, prendre la fonction convexe
p(x) = |z,

Corollaire 14. Soient [ une fonction convexe sur l'intervalle I, 6,...0,
des réels positifs de somme 1, x1,...,x, des éléments de I. Alors

f( Eni 9k$k> < i Or f (1)
=1 =1

Démonstration. 11 suffit de considérer une variable aléatoire discrete X telle
que P(X = x;) = 0; pour tout ¢ entre 1 et n. Le théoréeme de transfert pour
une variable aléatoire discrete et I'inégalité de Jensen donnent

/ ( > 9k:ck) ~ J(EX) <E[/(x)] =

M=

O f ().

k=1

6.6 Intégrale et queue de distribution

Théoreme 76. Soit X une variable aléatoire positive. On a

EX = P(X > t) d\(t).
Ry
Démonstration.
[ PX=axt) = [ [ Bues) dPx(s) @)
Ry Ry JRy
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Corollaire 15. Soit X wune variable aléatoire a valeurs dans N. On a
+o00
EX = kE P(X > k).
=0

Démonstration. D’apres le théoreme précédent, EX = [z, P(X > t) dA(?).
Comme t — P(X > t) est une fonction positive, on a

/R PX > ) dA\(t) = > P(X > t) dA(t).

k=0 J[kk+1]
Mais comme X est a valeurs entieres, on a
Vie [k k+1] P(X >t)=P(X > k),

d’ou le résultat. O

6.7 Moments d’ordre 2

On dit qu’une variable aléatoire X admet un moment d’ordre 2 si elle est
de carré intégrable, c’est a dire si X2 € £!.

On note £%(2, F,P) (ou encore £?) 'ensemble des variables aléatoires de
carré intégrable.

Lemme 10. Soient X,Y € L£2. Alors la variable aléatoire XY est intégrable.

Démonstration. Pour tous les réels a, b, on a |ab| < 1(a? + b?).
(En effet, a®+b*+2ab = (a+0)? > 0, d’ou (a®+b?)/2 > —ab et a*+b*—2ab =
(a—0)? >0, dou (a* +?)/2 > ab.)
On a donc )
0 <[XY] < S(X*+Y?),

Comme X2+ Y? est intégrable, on en déduit que | XY| est intégrable, ce qui
est ce que I'on voulait montrer O

Corollaire 16. £%(Q, F,P) est un espace vectoriel.

Démonstration. La stabilité par multiplication ne pose pas de probleme. Pour
la stabilité par addition, il faut remarquer que

(X +Y)? =X?+Y?4+2XY,

puis utiliser le lemme précédent et le fait que £' est un espace vectoriel. [J

6.7.1 Covariance et variance

Soient X et Y deux variables aléatoires admettant chacune un moment
d’ordre 2. On appelle covariance du couple (X,Y") le nombre

Covar(X,Y) = E[(X — EX)(Y — EY)]

On appelle variance de X le nombre
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Var X = Covar(X, X) = E(X — EX)%

On appelle écart-type de X le nombre

o(X) = (Var X)¥2.

Vocabulaire : On dit qu’une variable aléatoire est réduite siona Var X =1
(ou de maniere équivalente si o(X) = 1).
On a les propriétés suivantes

1.

N A o

(X,Y) — Covar(X,Y) est une forme bilinéaire symétrique positive.
Va,b e R Covar(X —a,Y —b) = Covar(X,Y).

Var(X +Y) = Var X + VarY + 2 Covar(X,Y).

Covar(X,Y) = EXY — (EX)(EY).

Var X = EX? — (EX)2.

[EXY|? < EX?EY? (inégalité de Cauchy-Schwarz)

| Covar(X,Y)| < o(X)o(Y).

Démonstration. 1. Notons (X,Y) = EX,|Y. Il est facile de voir que

(X,Y) — (X,Y) est une forme bilinéaire symétrique positive. Po-
sons L(X) = X —EX. X — L(X) est une application linéaire de £
dans lui-méme. On a Covar(X,Y) = (L(X), L(Y)). Les deux obser-
vations faites ci-dessus permettent de dire que (X,Y") — Covar(X,Y)
est une forme bilinéaire symétrique positive.

Covar(X —a,Y —b) = (L(X —a),L(Y —D))
(LX) = L(a), L(Y) = L(b))
(LX) =0, L(Y) = 0)

= Covar(X,Y)

Var(X +Y) = Covar(X +Y,X +Y)
= Covar(X, X) + 2 Covar(X,Y) + Covar(Y,Y)
= Var X +2Covar(X,Y) + VarY

Pour passer de la ligne 1 a la ligne 2, on utilise le fait que la covariance
est bilinéaire symétrique.
(X —EX)(Y —EY) = XY +EXEY — (EX)Y — (EY)X.
D’ou
E(X -EX)(Y —EY) = EXY +E(EXEY)—-EXEY —EYEX
EXY + EXEY — 2EXEY
= EXY — (EX)(EY).

. Il suffit d’appliquer la formule précédente avec X =Y.
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6. Comme (.,.) est une forme bilinéaire symétrique positive, 1'inégalité
de Cauchy-Schwarz s’applique.

7. Il suffit d’appliquer I'inégalité de Cauchy-Schwarz a la forme bilinéaire
symétrique positive Covar , puis de prendre la racine carrée.

]

Lorsque o(X) et o(Y') sont non nuls, on définit le coefficient de corrélation
de X et Y par

Covar(X,Y)

Corr(X,Y) = (K)o ()

D’apres ce qui précede, Covar(X,Y') € [—1;1]. Lorsque Covar(X,Y) =0
(ce qui implique Corr(X,Y) = 0 si 0(X) et o(Y) sont non nuls), on dit que
X et Y ne sont pas corrélées.

Lorsque Covar(X,Y) > 0 (ce qui implique Corr(X,Y) > 0 si o(X) et o(Y)
sont non nuls), on dit que X et Y sont positivement corrélées.
Lorsque Covar(X,Y) < 0 (ce qui implique Corr(X,Y) < 0sio(X) et o(Y)
sont non nuls), on dit que X et Y sont négativement corrélées.

6.7.2 Matrice de covariance

Si X = (Xy,...,X,) est un vecteur aléatoire dont toutes les composantes
admettent un moment d’ordre deux, on convient de dire que le vecteur a un
moment d’ordre deux et on appelle matrice de covariance de X la matrice
n x n dont les coefficients sont (Covar(X;, X;))1<ij<n-

Théoréme 77. Si X = (X,...,X,,) est un vecteur aléatoire admettant un
moment d’ordre deux , la matrice de covariance de X est la matrice dans la
base canonique de [’application bilinéaire positive

R"xR" — R
(a,b) — Covar((X,a),(X,b))

C’est une matrice symétrique positive.

Démonstration. A X fixé, I'application X — (X, a) est une application li-
néaire. Comme on a déja montré que Covar était une forme bilinéaire sy-
métrique positive, il s’ensuit que l'application considérée ici est une forme
bilinéaire symétrique positive. Cette application envoie le couple (e;,e;) sur
Covar((X, e;), (X, e;)) = Covar(X;, X;). La matrice d'une forme bilinéaire
symétrique positive est une matrice symétrique positive. O

Théoréme 78. Soit X = (Xi,...,X,) est un vecteur aléatoire admettant
un moment d’ordre deux et de matrice de covariance Cx et d’espérance my.
Soit A une application linéaire de R"™ dans RP, et b un vecteur de RP. Alors
Y = AX+b admet Cy = ACx A* comme matrice de covariance et [’espérance
de Y vaut Amx +b.
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Démonstration.

EY, = E( Y a:Xp+b)

Covar((Y,a),(Y,b)) = Covar((AX + ¢,a), (AX + ¢, b))
= Covar((AX,a), (AX, D))
= Covar((X, A%a), (X, A*D))
= (CxA*a, A™b)
(ACx A*a, b)

6.7.3 Espérance et indépendance

Le théoreme suivant est tres important :

Théoreme 79. Soient X,Y deux variables aléatoires intégrables indépen-
dantes. Alors, leur produit XY est une variable aléatoire intégrable et ’on
a

E[XY] =E[X]E[Y].

Démonstration. D’apres le théoreme de transfert, on a

EXY| = /R lzy| dPixy)
Il vient

EIXY| = /R lwy| dPix.y)
= [ lallyl d(Px ® B)(a.y)

= [ laldPx(x). [ Iyl dPy(y)
= E|X|E|Y]
< 400

Ainsi, le théoreme de Fubini nous a permis de montrer que XY était inté-
grable. Maintenant, et on a

EXY = [ aydPuxy
R2
= [, 2y d(Px ® Py)(z.y)

= /}RdeX(x)./Ry dPy (y)
= EXEY
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O

Corollaire 17. Soient X,Y deux variables aléatoires intégrables indépen-
dantes. Alors X et'Y me sont pas corrélées.

Démonstration. On a Covar(X,Y) = E[XY]| — E[X]E[Y] = 0. O

Remarque importante : Des variables aléatoires peuvent étre non
corrélées sans étre indépendantes.
Exemple : soient deux variables aléatoires vérifiant

P{X = 1}n{Y = 1}) = P({X = 1}n{Y = —1}) = P({X = —1}n{Y = 0}) = 1/3.

La matrice M associée a la loi du couple est

0 1/3 0
/3 0 1/3
La loi de Y s’obtient en faisant la somme des lignes : on obtient
(1/3 1/3 1/3)

On adonc EY =1 x (=1)+ % x (0) + 5 x (1) = 0.

D’autre part EXY = > ici 1.1y 2je- 1013 PPH{X =i n{Y =j}) =1/3 -
1/3 =0.

On a donc Covar(X,Y) = EXY — EXEY = 0.

Cependant

O:IP’({X:1}ﬂ{Y:O})7AIP(X:1)]P’(Y:O):zx;.

Corollaire 18. Soient X,Y deuz variables aléatoires indépendantes de carré
intégrable. Alors on a

Var(X +Y) = Var X + VarY.

Démonstration. On a toujours Var X+Y = Var X+Var Y +2 Covar(X, Y').Comme
X et Y sont indépendantes, elles ne sont pas corrélées, d’ou le résultat. [

6.8 Lois images par des transformations af-
fines

6.8.1 Exemple fondamental

Théoréme 80. Soit A € Glg(R) et b € R On suppose que le vecteur
aléatoire X admet la densité f par rapport d la mesure de Lebesque sur R,
Alors, le vecteur aléatoire Y = AX + b admet la densité

o) = e A =),

Démonstration. C’est essentiellement une reformulation du corollaire @. [
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Applications :

1. Si X suit la loi uniforme sur un compact K de R? alors Y = AX +b
suit la loi uniforme sur I'image de K par z — Ax+b. Cette application
est particulierement intéressante en dimension 1.

2. Si X ~T(a, ), alors pour tout x> 0, on a iX ~ T'(a, \p).
3. Si X suit la loi exponentielle de parametre e a > 0 alors iX suit la

loi exponentielle de parametre pa. ( Remarquer que ceci constitue un
cas particulier de la remarque prédente.)

4. Pour a € R et b > 0, X suit la loi de Cauchy C(0, 1) si et seulement si
Y = bX + a suit la loi de Cauchy C(a,b).

5. Soit 0 >0, m €R. On a X ~ N(m,0?) < 22 ~ N(0,1).

6.8.2 Application aux lois gaussiennes

Lemme 11. Soient X = (X;, X2) un vecteur aléatoire formé de deuz va-
riables aléatoires indépendantes suivant la loi normale N'(0,1). On pose Y1 =
cosX1 +sinfX, et Yo = —sin0X; 4 cos0X,. Alors Y7 et Yy sont deuz va-
riables aléatoires indépendantes suivant la loi normale N(0,1).

Démonstration. Sil'on note, pour z € R?, x = (z1, 22), la densité de X est

1 72 1 7’ 1 @t +ad 1 =13

mexp(—?) X mexp(—?) = %exp( 5 )= %exp( 5 ).
On a donc Y = M X, avec

M= < cosf@ —sinf )

sinf cosf

Ainsi, le vecteur Y = M X admet pour densité

11 My
det M 27 2

M est une matrice de rotation, donc son déterminant vaut 1 et c’est une
isométrie pour la norme euclidienne, ce qui implique que pour tout z € R?
on a ||[M~Yy|ls = |ly||2 : la densité de Y est donc

1 113
H _ J—

),

ce qui est précisément la densité de X : Y a donc méme loi que X, donc ses
composantes Y] et Y3 sont indépendantes et suivent la loi normale A/(0,1).
m

Théoréeme 81. Soient Uy et Uy deux variables aléatoires indépendantes, avec
Uy ~ N(my,0?) et Uy ~ N(mg,03). Alors Uy + Uy ~ N (my + ma, 0} + 03).

Démonstration. Si o1 = 0 ou 09 = 0, la variable aléatoire associée est
constante est donc le résultat provient de la remarque faite plus haut — I’ap-
plication affine est une translation.
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Supposons donc g7 > 0 et o5 > 0. On pose X; = Ul(r;lml et Xo = UQO;;’”
On peut trouver 0 tel que cosf) = —Z— et sinf = —22

e Wt Alors, si on
pose 0 = \/o} + 03, on a
U +Us = myq+mg+o(cosfX; +sinbXy).
D’apres le lemme, cos0X; + sinfX, ~ N(0,1), donc Uy + Uy ~ N(my +
ma, 0?). O
6.8.3 Application : convolution de deux lois a densité

Théoreme 82. Soient X etY deux variables aléatoires indépendantes sur
(Q, F,P), de densité f et g. Alors Z = X +Y admet comme densité la
fonction

s /_:O Flz— gt dt.

Si, de plus, X et'Y sont a valeurs positives, alors la densité est simplement

s Iy, (2) /0 Flz—t)g(t) dt.

Démonstration. On pose

(1) =2 (5) e (5 3)

La densité de (X,Y) est h(x,y) = f(x)g(y). D’apres 'exemple fondamental,
la densité de (Z,T) est

o(e10) = 47 ()

B (1 =1
detA=1et A _<O 1),

donc g(z,t) = h(z — t,t) = f(z — t)g(t).
D’apres le théoreme B3, Z admet comme densité par rapport a la mesure
de Lebesgue :

2 /R g(z,1) dA(t) = /R Flz = t)g(t) dA1).

Dans le cas ou X et Y sont a valeurs positives, il suffit de remarquer
que f(z —t) est nul si z dépasse t et que g(t) est nul si ¢ est négatif. Ainsi,
f(z —1t)g(t) ne peut étre non nul que pour z vérifiant 0 < ¢ < z, ce qui n’est
évidemment jamais vérifié si z est négatif. O

Exemple : ci-dessous, le graphe de la densité de Z lorsque X et Y suivent
toutes les deux la loi uniforme sur [0, 1].
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1 . . . .
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

O 1
-1 -0.5

(1= |z — 1)l (=)

Application : I'(a, \) x I'(b,\) = T'(a + b, \)

Théoreme 83. Soit a,b, A strictement positifs, X etY deux variables aléa-
toires indépendantes, X suivant la loi I'(a,\) et Y la loi T'(b,\). Alors Z =
X +Y suit la loi T'(a+b,\).

Démonstration. Pour tous a et A strictement positifs, on note f,  la densité
de la loi I'(a, ), soit (rappel)

far(x) =1g, (:U)F)(\:L)x“_le_)‘x.

D’apres le théoreme précédent, Z admet une densité f;. Cette densité est
nulle sur R_ tandis que pour z positif, on a

fola) = / ) fa,A(J? ~0hl®

F(a)F(b) 0

On fait le changement de variable t = 6x. On obtient

fz(z) = an_lxb_lx / 1 611 —60)" df
T'(a)D(b) 0
)\a+be—)\z b1 1
= (1 -0t df
T(a)T ()" /0 (1-6)
= K, bfa+b,,\(l’)7
ou K,p = G}L?b J3 0% (1 — 6)*=1 df. Evidemment f; et > Kqpforpnr(2)

coincident egalement sur R_ ou elles sont nulles. On a donc

/fz ) d\(w /Kabfa+b)\( ) dA\(z Kab/fa-i—b)\
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Mais f7 et foipa sont des densités donc leur intégrale sur R vaut un. On en
déduit K, =1, d’ou
f2(x) = forpa(2).
La densité de Z est la densité de I'(a + b, A), donc Z suit la loi ['(a + b, A).
Remarque : comme sous-produit de cette démonstration, on a obtenu le
résultat non trivial suivant :

eal blde
a+b /

6.9 Loi image par un C'-difféomorphisme

Le premier réflexe a avoir est d’utiliser le corollaire B, qui est bien stir tres
utile. Le paragraphe suivant décrit des stratégies lorsque 'application n’est
pas immédiate.

6.10 Calcul des premiers moments des lois
discretes usuelles

6.10.1 Indicatrice d’un événement

On rappelle que pour A C Q, l'application 14 (appelée indicatrice de A)
est définie sur €2 par
lsize A

ﬂA(fU):{oawA

14 est une variable aléatoire a valeurs dans {0;1}. Il est important de re-

marquer que, comme Vz € {0;1} 2% = x, on a 1} = 4. Maintenant, on a

EILA = P(A) et

Varly, = EIE — (El,)?
= El, — (Elly)?
= P(A) —P(A)?

6.10.2 Loi binomiale

On a vu que la loi binomiale de parametres n et p était la loi de
n
X = ZﬂAm ou Ay,..., A, sont n événements indépendants de méme pro-
k=1
babilité p. On a donc

EX = ZE]IAk = ZP(Ak) =np,
k=1 k=1

et comme les variables aléatoires sont indépendantes

Var X =) Varly, = ZIED (Ap)(1 —=P(Ax)) = np(1l — p).

k=1
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6.10.3 Loi géométrique

Soit X une variable aléatoire suivant une loi géométrique de parametre
p €]0,1]. On a

+oo
EX = Y kP(X =k)
k=0
+o0o
— S KP(X = k)
k=1
+oo
= > kp(l—p)*t
k=1

+o00
= pY k(1—p)*!
k=1

v
(1-(1-p)?

"= T

EX(X —1) = f k(k — D)P(X = k)

2
— p(l—
=Py
_ 2(-p)
— =
On a alors EX? = EX (X — 1)+EX:%+ 2(;;10) ot
1

VarX = EX? — (EX)2=1 4200 L _1p

p p? p? P
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6.10.4 Loi de Poisson

EX = S kP(X =k)

EX(X —1) = fjo k(k — D)P(X = k)

On aalors EX? = EX(X — 1)+ EX = A2 4+ et
Var X = EX? — (EX)2 = A2 + A — A% = \.

6.10.5 Loi hypergéométrique

On rappelle que la loi hypergéométrique H (N, n, k) est la loi image de la
loi uniforme sur Q = B(N, k) par 'application

X:B(N,k) — N
W o Xw) = [{1,...,n})Nw|

On va montrer que EX = k% et Var X = k2 (1 — »)8
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Démonstration. Notons P la loi uniforme sur §2. Par souci de lisibilité, on
définit I'ensemble aléatoire A par A(w) = w. Ainsi

X = |{1,...,n})NA|
= igl ]]{ieA}
Pour tout k € {1,...,n}, on a
N—l)
| @A (N = 1IN — k)! N—k k
Elfiea) =Plic A)=1- (M - N(N—-k-1)! N N
k
Ainsi .
n n
EX = —.
Z ]]{1614} N kN
Maintenant, on a
Var X = 21 '21 Covar(llyicay, Igjeay)-
i= Jj=
Pour ¢ = j, on a
. : k k
Covar(ljic ay, Ijjeay) = Varlleay =P € A)(1 -P(j € 4)) = N(l - N)

Pour i # j, on a

Covar(lly;cay, Ijcay)

On en déduit

Var X

On remarque
loi blnomlale B(k,

Covar(l —Iigeay, 1 —Ieay)
Covar(llyigay, ¢ ay)

Plig A j¢A)—Pli¢g AP ¢ A)
_ (NIC_Q)_<N_k)2
(&) v
 OWN-R(N-k-1) N-k,
- N(N —1) — )
1 k&
= vt W
n><;(1—]If[)—i-n(n—l)x(—Nl_ljl\C](l—;))
k k n—1
NI DA
k k. N-n
LT
n n N—1
S

qu'une loi hypergéométrique a la méme espérance qu’une

2) et que sa variance ne differe de celle de cette binomiale
1

O
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6.11 Calcul des premiers moments des lois a
densité usuelles

6.11.1 Loi uniforme sur un segment

Soit X une variable aléatoire suivant la loi uniforme sur [—1, 1]. La densité
de X est donc

1
T +— 5]].[,171] (ZL’)

On a donc -
EX:/ Srde =0

~12
et 11 ]
EX? = —z% dr = -.
12 3

Comme X est centrée, on a Var X = EX?2.
Passons au cas général : on pose Y = “T”’ + b’T“X . X suit la loi uniforme
sur [—1, 1] si et seulement Y suit la loi uniforme sur [a,b]. On a alors
— +b b— _ atb
— EY =K%~ + 5 EX = %7,

— VarY = (52)?Var X = (bzg)Q

6.11.2 Loi gaussienne

Soit X une variable aléatoire suivant la loi N(0,1). On rappelle que la

densité de X est ) ,

f(x)zﬁ oz

e 7.,
Lemme 12. Soit g une fonction dérivable sur R telle qu’il existe A et c tels
que
Ve e R |g(x)|+ |g'(x)] < Aexp(—clz]).

Alors, si X ~N(0,1) , alors ¢'(X) et Xg(X) sont intégrables et on a
E[g'(X)] = E[Xg(X)].

Démonstration. 11 est facile de vérifier que

d

g(@) (@) = (9'(x) — 29(2) f ()

On a donc

Va.b € R g()](0) ~ g(a)f(a) = [ §@)f) dx [ o) f(a) da

Les hypotheses faites sur g et ¢’ assurent 'intégrabilité sur R de ¢'f et gf.
Comme, de plus lim g(a)f(a) = lim ¢(b)f(b) =0, on en déduit que
b—4o0

a——00

0= [ §@)f@) d\2) — [ g(a)f(x) d().

soit E[¢'(X)] = E[X g(X)]. O
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En prenant g(z) = x, on obtient l'existence d’un moment d’ordre 2 avec
E[X?] = 1. D’autre part, I'existence d’'un moment d’ordre 2 implique celle
d’un moment d’ordre 1. Comme la densité de X est paire, on en déduit que
EX =0. On a donc Var X = EX? = 1.

Passons au cas général. Si l'on a Y = m + ¢ X, on sait que Y suit la loi
N(m,0?). On a alors EY = m + cEX = m et VarY = ¢? Var X = o2

Exercice laissé au lecteur : pour X ~ A(0, 1), exprimer E[X?"] en fonction
de n.

6.11.3 Lois Gamma

Soit X une variable aléatoire suivant la loi I'(a, A). Alors, X admet des
moments de tout ordre, avec pour tout a > 0, on a
r
Exe =yt o)
I'(a)
En particulier EX = ¢ et Var X = {.

Démonstration. Pour tous a et A strictement positifs, on note f, » la densité
de la loi I'(a, A), soit (rappel)

o) =T (@) s e

D’apres le théoreme de transfert,

EX* = / % for(z) do
R

+

JTla+a)
A foran(@) d
['(a)
Ainsi EX = A\HHE = & Ex? = A2Hetd — a6l Var X = EX? -
EXpP =2 o — o O

6.11.4 Lois exponentielles

Soit X suivant une loi exponentielle de parametre A > 0. La loi exponen-
tielle est un cas particulier de la loi Gamma : on a £(A) = ['(1, A). On déduit
du calcul précédent que EX = % et Var X = %

6.11.5 Lois de Cauchy

Soient a € R,b > 0. La loi de Cauchy C(a,b) admet comme densité par
rapport a la mesure de Lebesgue :

b
x'_);(a:—a)z—irb?’
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donc pour £ > 1, on a

1 b|z|*

7 (z —a)?+ b2
donc les lois de Cauchy n’admettent pas de moment d’ordre 1, ni , a fortiori,
d’ordre supérieur.

= —{—OO’
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6.12 Exercices sur les espérances

Exercice 76. Un jeu consiste a effectuer une mise en choisissant un nombre
entre 1 et 6, puis a lancer simultanément trois dés. Si le numéro choisi sort
une fois, le joueur récupere sa mise plus une somme égale a sa mise. Si le
numéro choisi sort deux fois, le joueur récupére sa mise plus une somme égale
a deux fois sa mise. Enfin, si le numéro choisi sort trois fois, le joueur récupere
sa mise plus une somme égale a trois fois sa mise. Quelle est I'espérance de
gain a ce jeu?

Exercice 77. Soient A, B deux éléments observables. On note
AAB={r e A;x ¢ B} U{x € B;x ¢ A}.

Ce sont donc les éléments qui sont dans A ou dans B, mais pas dans les deux.
Montrer iyap = (I4 —13)%. En déduire

P(AAB) = P(A) + P(B) — 2P(AN B).

Exercice 78. Soient A, B deux éléments observables. Montrer que

IP(AN B) — P(A)P(B)| < \/P(A)P(B).

Exercice 79. 1. Soit X une variable aléatoire de carré intégrable. On
note o2 sa variance et m son espérance. Montrer que pour tout a réel,
02 <E(X —a)?.

2. Soient a1 < as < --- < a,. On pose

a4 +an
—

Montrer que
S (g —my < (=)
k=1 B 4

SRS

Exercice 80. Soit X une variable aléatoire a valeurs dans N* telle la suite
(Pn)n>1 définie par p, = P(X = n) soit décroissante. Montrer que pour toute
injection o de N* dans lui-méme, on a

Eo(X) > EX.

Exercice 81. On suppose que Y = In X vérifie Y ~ N(m,0?) (on dit alors
que X est log-normale). Calculer EX et Var X.

Exercice 82. Calculer Esin X, ou P(X =
Ty 1
E) -2

Exercice 83. Soient X,Y deux variables aléatoires suivant chacune une loi
uniforme sur [a, b]. Montrer que E|X — Y| < 2%, Que vaut E|X — Y| lorsque
X et Y sont indépendantes ?

Exercice 84. Soit X une variable aléatoire suivant la loi uniforme sur [0, 1].
Déterminer la loi de Z = —1In(1 — X).
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Exercice 85. Soit X une variable aléatoire de densité f. Montrer que la
variable aléatoire | X| admet comme densité

z = g, (2)(f(2) + f(=)).

Exercice 86. Soit X une variable aléatoire positive de densité f. Montrer
que la variable aléatoire X/? admet comme densité

z = lg, (v)22(f(2?)).

Exercice 87. Soit X une variable aléatoire normale centrée réduite. Montrer
que la variable aléatoire X2 est a densité et la déterminer.

Exercice 88. La figure ci-dessous représente la densité f(x,y) d’un couple
de variables aléatoires indépendantes X et Y. X suit une loi exponentielle
de parametre 1 et Y une loi normale centrée réduite.

On a tracé quelques isoclines, c’est a dire des courbes reliant des points
de méme densité : f(x,y) = constante. Quelle est la nature géométrique de
ces isoclines 7

0.4 r
003§ -
035 [/ N7
L]
001'% - """""""i
01 [ L A e
S LT 3

Exercice 89. Soit X et Y deux variables aléatoires indépendantes. On sup-
pose que X suit la loi normale N(0,1) et Y la loi gamma (%, 3). Calculer
la loi de

Y

La loi de Z est appelée loi de Student a n degrés de libertés.

7 —

Exercice 90. Soient X et Y deux variables aléatoires indépendantes suivant
la loi uniforme sur [0, 1]. On pose S = X +Y et P = XY
Déterminer la loi de (S, P).

Exercice 91. (*)
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Soit f une fonction réelle continue sur l'intervalle fermé [0, 1]. Pour n €
N*, on note B,, le polynéme de Bernstein

B =% f<f;>(2)xk<1 ay

Pour tout z €]0,1[ on se donne une suite (Xj) de variables de Bernoulli
indépendantes de méme parametre z. On note S,, = > 7 Xj.
2 . Sn
1. Déterminer la moyenne E[f(=2)].

2. Soit pour tout € > 0, le réel 6(e) défini par
o(e) = sup{|f(z) — f(y)| : 2,y € [0, 1] et |z —y| <e}.

(a) Démontrer que 6(¢) tend vers 0 avec .

(b) Démontrer que

sup |Bn(z) — f(z)| < d(e) + 2]l .

z€[0,1] ne?

En déduire que la suite des polyndémes B, converge vers f uniformé-
ment sur [0, 1].

Exercice 92. On place 7 dames sur un échiquier torique 41 x 41 de telle
maniere qu’aucune dame ne puisse en prendre une autre.

Soit ¢ une permutation des cases de 1’échiquier.

Montrer qu’ il existe x tel que x et ¢(x) puissent chacun étre pris par au
moins une des dames.

On rappelle que les dames peuvent prendre les pieces qui sont sur la méme
ligne, sur la méme colonne, ou sur une méme diagonale.
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Exercice 93. Soient n,r deux entiers tels que 1 < r < n. On prend r
nombres distincts au hasard dans {1,...,n} et on note X le plus petit de ces
r nombres.

1. Quelles valeurs peut prendre X 7 Montrer que pour k € {0,n—r}, on

a
n—k
P(X > k)= ( - )
(%)
2. En déduire que
EX — (:Lﬁ) _ n+1
(:}) r+1°

Exercice 94. Soient X et Y deux variables aléatoires indépendantes suivant
la loi uniforme sur [0, 1].

us

1. Soit r la rotation dans R* de centre (0,0) et d’angle —%. On pose
(U, V) = r(X,Y). Montrer que la loi du vecteur (U, V) est la loi

uniforme sur un ensemble que ’on déterminera.

2. Pour quelles valeurs de « la variable aléatoire est-elle inté-

1
| XYl
grable ? Lorsqu’elle 'est, calculer sa valeur.

Exercice 95. Soient (X,,),>1 une suite de variables aléatoires centrées de
carré intégrable. On suppose qu’il existe une fonction b de Z dans R telle que
E[X;X,] = b(i — j) quels que soient i et j dans N.
1. Montrer que b est paire et exprimer simplement la variance de X1+7\/5+X”
en fonction des b(7).

2. Montrer que si b(i) < 0 pour tout i non nul, alors la série de terme

général b(i) est convergente, avec 35 (—b(7)) < @-

Exercice 96. Probabilité de retour en zéro au tempsn d’une marche aléatoire
symétrique

1. Soit X une variable aléatoire a valeurs dans Z. Montrer que

1 21 .
P(X =0) =5 [ E[e"] db.
(X=0)= 5 [ B
2. Soit Xq,..., X, des variables aléatoires indépendantes identiquement

distribuées, avec P(X; = 1) = P(X; = —1) = 1/2. On pose S, =
X; + -+ + X,,. Montrer que P(S;, = 0) = %Wgn, ou W, désigne
I'intégrale de Wallis (voir exercices du chapitre 4). En déduire que

P8 =0) ~

Exercice 97. Soit n et k des entiers avec 1 < k < n. On pose

0= {xe {0,1}”;127311‘1':]6}.

On note P la loi uniforme sur 2. On note X = (Xy,...,X,) le vecteur
aléatoire représentant les composantes d’un élément de €2
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1. Soient i et j deux entiers entre 1 et n distincts, a,b € {0,1}. Montrer
qu’il y a une bijection entre

Q‘f:g: {z € Q21 =a et z9 = b}
et
Qf‘,’;’: {r € Qyz; =aet z; =0}
En déduire que les vecteurs (X7, X») et (X;, X;) ont méme loi.

2. Montrer que pour tout i, X; suit la loi de Bernoulli de parameétre k/n.
Donner la variance de X;.

3. Pour tout entier r entier avec 0 < r < n, on pose S, = >, _; X;.
Calculer I'espérance de S,. Montrer qu’a n fixé, il existe un polyndéme
P, de degré 2 tel que pour tout r entre 0 et n, Var .S, = P,(r).

4. Montrer que Var(X; + --- + X,,) = 0. En déduire la variance de S,.

5. Proposer une expérience basée sur un tirage sans remise qui puisse se
modéliser a 'aide de la variable S,.



116 CHAPITRE 6. ESPERANCES ET CALCULS



Chapitre 7

Espaces LP et LP

Soit (€2, A, 1) un espace mesuré. Pour p € [1,400), On note LP(2, A, i)
I'ensemble des applications mesurables de (€2, A, 1) dans (R, B(R)) telles que

L 1@ dpz) < +oo.

On dit que des nombres p et ¢ de |1,4+00] sont des exposants conjugués
si ils vérifient.

1 1
-+ -=1
p q
On convient également parfois que 1 et I'infini sont des exposants conju-

gués, mais cela ne sera pas utilisé ici.

7.1 De P al?

7.1.1 Inégalité de Holder

Théoréme 84 (Inégalité de Holder). Soient p et q des exposants conjugués
de |1, +o0[, (2, A, 1) un espace mesuré, [ et g deuz éléments de V(Q2, A, u).

On a
[ g0 s ([ 15 anw) " ([ o anw)

Démonstration. Si f est nulle u presque partout, alors I'inégalité est évidente
(c’est en fait une égalité). Idem pour g. Dans le cas inverse, on a

1/q

|f(z)P du(x) o >0 et lg(x)]? dp(x) > 0.
(4 ) Q

Bien siir, fi, fg dp < Jo | f]-|9| dp, done remplagant f par f/ (fo |f(2)[? dp(x))"”
et g par g/ (Jq|g(z)|? du(z))"?, on peut se ramener au cas ol f et g sont

positives avec (Jo f(2)? du(2))"” = (Jo 9(a)? dp(x))"/" = 1.

Or pour tous x,y dans Ry, on a
2P q
ry < — + y—.
p q
Si z ou y est infini, ¢’est évident. Sinon, on peut écrire © = e*P, y = e?/7 et
appliquer la convexité de la fonction exponentielle.

117
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A f@y |, o
)P g(x)?
oot < L0 901,
d’ou
[ @) aute) < [ que)+ [ D dquiw) = 1p+ 10 - 1.

7.1.2 Inégalité triangulaire

Théoréme 85 (Inégalité triangulaire). Soient p € [1,+oc[, (Q, A, p) un
espace mesuré, [ et g deuzx éléments de V(2, A, ). On a

(/\f )+ g(@)” du(x ) (/If NP dp(w ) (/Ig )P dp(x )1/p-

Démonstration. Dans le cas ou p = 1, c’est une conséquence immédiate de
I'inégalité triangulaire sur R et de la positivité de I'intégrale. Supposons donc
p €]1, 400 et notons g 'exposant conjugué de p. Comme précédemment, on
peut supposer que f et g ne sont pas presque partout nulles. Par ailleurs,
si Jolf(@)]P du(z) = 400 ou que [, |g(z)P du(z) = +oo, l'inégalité est
évidente. On suppose donc que ces deux quantités sont finies. Comme |f +
gl” < (|f] + |g])?, on peut supposer sans perte de généralité que f et g sont
f+a\"_fr+g’

positives. Maintenant, comme par convexité de x +— 2P,

il s’ensuit qu’on a également [, |f(x) + g(x)|P du(z) < +oo.
On écrit alors

(f+aP=Fff+9"  +ag(f+9P"

L’inégalité de Holder donne

[rrvarans ([ )" ([r+aoan)”
/ff+g” Ydp < (/ fpdu> p(/ﬂ(f+g)pdu)l/q.
/Qg(erg)”’1 dp < (/Qg” du>1/p (/Q(f+g)” du)l/q-

En additionnant, on obtient

foreorans (L) (o)) Goror )"
D’ou
(/Q<f+9)” du)l/p < (/Q fid du>1/p+ (/Qgp d@%

soit

De méme,
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Ainsi, il est maintenant simple de constater que si ’on pose

1= ([ 1o an) "

on définit ainsi une semi-norme sur 'espace vectoriel £P(Q, A, u).

Remarquons bien qu’en général, ||.||, ne définit pas une norme sur £7(£2, A, p)
car I'axiome de séparation peut étre pris en défaut. Ainsi, sur L7(R, B(R), A),
on a bien |[lg||, = 0, mais bien stir, Iy # 0.

Notons V' = {v € LP;||v], = 0}. D’apres I'inégalité triangulaire, V' est
un sous-espace vectoriel de £P. Un raisonnement simple (exercice!) permet
en fait de montrer que V.={v € LP;v =0 pup.p.}

Notons L le quotient de 'espace vectoriel L£P par son sous-espace vecto-
riel V.

Soit f et g deux éléments de la méme classe : k = f — g € V. D’apres
Linégalité triangulaire | f[,, < lgl, + [l = lgl,- De méme flgl, < £ +
\Ell, = || fllp, dou || fll, = |lg]l,- La semi-norme passe donc au quotient :
pour f € LP, on note || f|l, = ||g]|, ot g est un quelconque représentant de la
classe f. Evidemment, f — | f||, est encore une semi-norme sur L”.

Mais en réalité, f + || f||, est une norme sur L?. En effet, supposons || f||, = 0.
Soit g un représentant de f : on a ||g||, = 0, donc g € V, ce qui signifie que
g est dans la classe de 0, donc f est le zéro de LP.

Bien que L? ne soit pas un espace vectoriel normé, on pourra lire fréquem-

ment pour des fonctions (f,)n>1, f de LP : (f)n>1 converge dans LP (ou par-

fois (f,)n>1 converge dans LP) vers f. Cela signifie que lim || f, — f|, = 0,
n—-+00

ou de maniere équivalente, que la suite des classes dans LP des éléments de
(fn)n>1 converge dans L vers la classe de f dans L”.

7.2 Complétude de L?

Théoréme 86. Pour tout p € [1,+oo[, LP est complet

Lemme 13. Soit f,, une suite d’éléments de LP avec

> I fall< + o0

n>1

Alors la suite
> by [x converge dans LP quand n tend vers l'infini.

Démonstration. On note g,, un représentant de f,,. On va montrer qu’il existe
une fonction g dans L7 telle que || >-7_; g — 9|, tend vers 0, ce qui donnera
la convergence de la suite Y}, fi vers la classe de g.

Supposons d’abord que les (gi) sont positives : dans ce cas la suite de
fonctions S, = >°;_; gr converge simplement vers une fonction g mesurable
(éventuellement infinie en certains points) Cependant d’apres 'inégalité tri-
angulaire

[ St i < (3 llgell )"
Q k=1
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et donc d’apres le théoreme de convergence monotone

+o0
| 9" dn < (X llgully)? < +oo.
k=1

o . 4o . > . Sy =
Ainsi g est dans L£P. Soient n et n’ avec n’ > n. On a (S Sp)?

/ . \ / \
(X h—ni1 gk)P- Faisons tendre n' vers +o0o : d’apres le théoreme de conver-
gence dominée, on a

/Q (9= Su) dju= Tim [ (Sw — S, du,

n’—4o00 JQ
d’ou
Hg'_'S%Hp ::nggghp’Lsn’_'Ska'
Cependant, d’apres 'inégalité triangulaire

n/

”Sn’_sn”p < Z ”ngp

k=n-+1
+o0
< > llgrlls
k=n-+1
d’ou
+oo
10 =gl < > llgely-
k=n+1

Mais on reconnait la le reste d’une série convergente, donc ||.S,, — g||, tend
bien vers 0.

Dans le cas général, écrivons g; = g;° — g5 . On définit évidemment g+ =
Sgietg =090, ST =095, S, =37, g, . La série de terme général
i |, est convergente car ||g; ||, < [|gk]l,- On montre ainsi que [|S;F — g*||,
tend bien vers 0, et de méme que ||S;, —¢~ ||, tend bien vers 0. Enfin, I'inégalité
triangulaire permet de conclure que ||.S,, — g||, tend bien vers 0. O

Ainsi, on a montré que dans LP, toute série absolument convergente est
convergente. Pour conclure, il suffit de s’appuyer sur le résultat d’analyse
suivant.

Lemme 14. Un espace vectoriel normé ou toute série absolument conver-
gente converge est complet.

Démonstration. Remarquons d’abord que si une suite de Cauchy admet une
sous-suite convergente, elle converge. En effet supposons (x,,) de Cauchy avec
Tp, qui converge vers [. Soit kg tel que ||z, — || < e/2 pour k > kq et by tel
que ||zg — x| < /2 lorsque k et k' dépassent by. Alors ||z, — || < € des que
n dépasse max(ng, 1y, )-

Soit maintenant z, une suite de Cauchy dans un espace ou toute série
absolument convergente converge. On pose ng = 1, puis pour k£ > 1 :

ng =1inf{n > ny_y 14,9’ > n = |lz; —xy| <27}

Cette suite d’indices est strictement croissante et est bien définie car (xy)
est de Cauchy. Par construction ||z,, — @, || < 27 pour k& > 1, donc
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la série de terme général x,, — x,,,, est absolument convergente. Mais on
a fait '’hypothese ici qu’'une série absolument convergente est convergente,
donc elle est convergente, ce qui veut dire que z,, est convergente. (x,,) est
donc une suite de Cauchy qui admet une sous-suite convergente, elle est donc
convergente. O

Théoréme 87. Soient f,(fn)n>1 des fonctions dans LP telles que (fn)n>1
converge dans LP wvers f. Alors, il existe une suite strictement croissante
d’indices (ng)g>1 telle que (fn, )k>1 converge presque partout vers f.

Démonstration. On pose g, = |f — fulP. (gn) converge dans L' vers 0 et
nous devons montrer 'existence d’une suite strictement croissante d’indices
(ng)k>1 telle que (gn, )x>1 converge presque partout vers 0.

On pose ng = 1, puis pour k£ > 1 :

ng =1inf{n > n,_1 10,9 > n=>||g; — gu|ls < 27%}.

Cette suite d’indices est strictement croissante et est bien définie car (gi) est
de Cauchy dans £'. Par construction ||gn, — gn,.. || < 27 pour k > 1, donc
la série de terme général ||gn, — gn,.,||1 est convergente. Mais

+oo
Z Hgnk Inpsalln [ = Z / |Gy, — gnk+1| dp
n=1
—+00
n=1

La fonction positive

Z [ gnk+1

est intégrable, elle est donc en particulier finie presque partout. En un point
x tel que

2 |9n, (&) = gnyor ()] < o0,

la suite (gn, (7))k>1 converge. (g, )k>1 converge presque partout vers une
fonction g*. Mais d’apres le lemme de Fatou,

/g*duz/mgnkduém/gnk dp =0,

donc g* est nulle presque partout, ce qui acheve la preuve.

7.3 Théoremes d’approximation

Théoréme 88. Soit S l'ensemble des fonctions simples s sur (Q2,F) telles
que

p({z € Q;s(x) #0}) < +oo.

Pour tout p € [1,+00[, S est dense dans LP(u) (et donc les classes de ces
fonctions sont denses dans LP(u)).
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Démonstration. D’abord, il est facile de voir que S est dans LP(u). Soit
f € LP. Supposons f > 0 et prenons f,, comme dans le lemme B0. On a

]l{fn>0}2_np < ]l{fn>0}f£ < fp7

d’ou
plfo> 027 < [ 17 dp,

et donc f, € S. Ona |f,— f|? < fP, donc d’apres le théoréme de convergence
dominée, [, |f, — f|? dp tend vers 0, c’est & dire que f, tend vers f dans LP.
Le cas général s’ensuit en séparant partie positive et partie négative, comme
dans la preuve du théoreme B@. n

Théoréme 89. Soit p € [1,+00[. Les classes des fonctions continues a sup-
port compact forment une partie dense dans LP(RY, B(R?))

Ce théoreme est admis.
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7.4 Exercices sur les espaces L? et L?

Exercice 98. Etudier appartenance a £'(R) et & £2(R) des fonction sui-
vantes :

1. f(t)=e ¥,
2. g(t) = oL,
3. h(t) = =t

VIHA+2)

Exercice 99. Etudier la convergence dans £'(R) et dans £2(R) des suites
suivantes :

L. f.(t) = /nexp(—n?t?).

2. gn(t) = "2 e/ (1)

3. hu(t) = 25v/n% — 2y, (t).

Exercice 100. Soit f une fonction de R dans R intégrable et soit f 1a classe
de f dans L'(R, \). Montrer que f contient au plus une fonction continue.

Exercice 101. Soit £ = {f € LY(R,\) ; |f] <1 X — p.p}. Montrer que F
est un sous-ensemble fermé de L'(R, \).

Exercice 102. Montrer que la fonction f : z +— est dans
V(1 + |In(z)|)

LP(]0, +00[, A) si et seulement si p = 2.

Exercice 103. Montrer quessi f et g appartiennent a £1(X, p) alors /| f2 + ¢2|
appartient aussi & £1(X, ).

Exercice 104. Soient « € R et p € [1, 400[, on note f, l'application de
10, +o0[ dans ]0, +oo], définie par fa(z) = z°.

1. Pour quelle(s) valeur(s) de a, la fonction f,, appartient-elle a £(]0, 1], A) ?
Calculer alors les normes de f, dans chacun de ces espaces.

2. Méme question avec les espaces LP([1, 00, A)

Exercice 105. Donner un exemple de suite (f,,) dans £'(X, ) telle que

1. (f,) converge vers f presque partout mais (f,) ne converge pas vers
f au sens de la norme £';

2. (fn) converge vers f dans £! mais (f,) ne converge pas vers f presque
partout ;

3. (fn) converge vers f presque partout, ([ f,du) converge vers [ fdu,
mais (f,) ne converge pas vers f au sens de la norme L.

Exercice 106. Soient (X, M, u) un espace mesuré avec u(X)=1et f, g
des fonctions mesurables sur X a valeurs dans [0, +o0] telles que fg > 1.

Montrer que l'on a (/X fdu)(/X gdp) > 1.

Exercice 107. Soient f € LP(X,u), g € LY(X, p) et 7 tel que + =
Montrer que fg € L7(X, u) et que [|fgll. < [[f]lp[lgllq-

_|_

Q=

1
p
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Exercice 108. Soit p €|1, +oo[. Pour f dans £P(]0,4o00]) et pour > 0, on
pose
1
T(f)(=) = — [ fdXx.
X J)0,x|
1. Montrer que T'(f) est bien définie sur |0, 4+o0].
2. On suppose dans cette question que f est positive continue a support
compact.

(a) Montrer que T'(f) est dérivable sur |0, 4o00[ et calculer sa dérivée.

(b) Montrer que T'(f) € L£P(]0, +o0l).
p _ P p—1
(¢) Montrer que /]o,oo[ T(f)PdN = Pl T(f)P~ fdA.

(d) En déduire que ||T(f)|l, < plepr

(e) Montrer que cette inégalité reste vraie pour f de signe quelconque.

3. Soit f € LP(]0, +00]).
(a) Montrer que si (f,) est une suite de fonctions continues a sup-
port compact qui converge vers f dans LP(]0,+oo[), alors T'(f,,)
converge vers T'(f) A—presque partout, puis que la suite (T'(f,))

est de Cauchy dans L?(]0, +o00[) et enfin que (T'(f,)) converge vers
T(f) dans L*(]0, +00]).

L p
(b) En déduire que ||T(f)[|, < plepr-
Exercice 109. Soit (X, 7, 1) un espace mesuré tel que u(X) < oo, 1 <p <

oo et f: X — R une application borélienne. On suppose que pour toute
fonction g € LP(X, pu), la fonction fg est intégrable et il existe C' > 0 telle

que pour toute fonction g € LP(X, ) on ait |ffg d,u| < C||g||p- Montrer

que f € L9(X,u) ol q est défini par 1%4—% =1



Chapitre 8

Convolution et transformation
de Fourier

8.1 Produit de convolution

Remarques :

— Si f1, f2 sont deux fonctions de £! qui représentent le méme élément
de L', alors [ fi du et [ fo du sont égales, donc on peut se permettre
d’écrire [ f du pour f € L'.

— L’application T : f — (x — f(z —t)) passe au quotient dans £!(R?),
car si fi = fo presque stirement, alors fi(. —t) = fo(. — t) presque
stirement.

Théoréme 90. Pour tout f dans LP, l'application
t=Tof
est continue sur R.

Démonstration. ||Tiinf—Tif|lp = Th(Trf)— (T3 f)||p, donc il suffit de montrer
la continuité en 0. Traitons d’abord le cas ou f est une fonction continue a
support compact : comme f est continue T}, f tend simplement vers f. En
utilisant le théoreme de convergence dominée, on optient alors la convergence
dans LP de Tj, f vers f. Passons au cas général. D’apres le théoreme B4, on
peut trouver g et h, avec f = g+h, g continue a support compact et || ||, < e.
On a

(Thf = f) = (Tig — 9) + (Tth — h),

d’ou

ITef = fllp 1Teg = gllp + I Tehll, + 12l

<
< NTig =gl + 202l

ce qui entralne, en faisant tendre t vers 0

T [|Tof — fll, < 2e.
t—0

Comme c’est vrai pour tout ¢, on en déduit que lim ||T3f — f|, =0, ce qui
t—0

est bien ce qu’on voulait montrer. O

125
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8.1.1 convolution dans £!

Soient f, g deux éléments de £L1(\%).

/Rd < @ = )llg(2)] dAd(t)) A\ (z) = /R[R |f(z = )]|g(t)] dX? @ (¢, z)
= [ ([ 17 =nllg1 axie) ) axte)

= [0l ([, 1# =01 dxi@) ) dxio
= [ 1o (/ £(2)] dX(x) )d/\d
- (/ 7@l axite) ) ([ o) axie) )

Ainsi, la fonction f % g définie par

v frgl@) = [ fo=1glt) (1)

est définie en presque tout point z et elle est dans £! : cette fonction est le
produit de convolution de f par g

Les arguments évoqués plus haut fonctionnent encore : le produit de
convolution “passe au quotient” et définit ainsi une application de L' x L!
dans L!.

Au passage, notons qu’on a démontré

1+ gl < £l llglh

En reprenant le calcul précédant et en supposant que f et g sont dans
L', le théoréme de Fubini permet alors d’écrire

Jo (L fa=na ') i) = [ fla=ngle) x' @ ¥(e.e)
([, £ = 0a(t) ax'(2) ) ax'cy
9 (/Rd flz—t) d\'(x) )d)\d(t)
= [Lo0 ([, #a) ax'i@) ) an'ee)

_ (/Rdfx) AN (x )(/Rdg(ﬂ dkd@)),

=

d

=

-
J

soit

/Rd(f v g)(z) d\Y(x) = (/Rdf(x) dN(2) ) (/Rdg(t) (1) ) (8
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8.1.2 autres produits

Supposons maintenant que g € L' et que f € £LP. On a
[15—nlle@] axte) = [ 17— ollgo)]¥lg(e) ax)

< (/ux_tmg|dv ) (/m (B)] dA"(2) )q

D’ou
(1 =nllgw axiw)” axie) < [ ([ 156 - 0Ploo] axio)) axia) gl

Cependant,

J (17 =orig@l i) axt@) = [ [1-0Flgo) ax'@) axi
= [(J 1@ =0r av'@) 1g@1ax'e

= [ IS Rlglar )
= £1lgs,

donc finalement
p
[ ([ 1rt@=nllgol ax'n))” axtia) < 17zl
Ainsi, I'intégrale

/fx—t £) dN4(t)

converge pour presque que tout x et 'application

x— fxg(t) /fx—t t) dA(t)

représente un élément de LP avec

J15 = g0 axt) < | 1Elgl T,
soit
1S = gllp < 1 Fllnllglls-

Remarque importante : quel que soit ’espace ou on définit les choses, on
a toujours

/fx—t £) dx4(t) /gm—t £) dx4(t)

pour les x tels que
[ 1 = Dg(t)] ax’(e) < +ox,

de sorte que
frg=g=f

toutes les fois ou cela a un sens.
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8.1.3 Approximations de 'unité

Théoreme 91. Soit ¢ une fonction positive avec

[, o) axi(a) =

Pour tout k > 1 posons pi(x) = k¥p(kx).
Alors, pour tout f dans LP la suite f * @ converge vers f dans LP.

Démonstration. Notons My, I'application qui a f associe f . C’est une ap-
plication linéaire continue de £P dans lui méme. C’est méme une contraction
car

Vel |[Mpflly < [l

(C’est ce qu’on a montré dans la sous-section précédente.)
Soit z € RY :

[ron@) = f@) = [ o= DekOk! () - f(@)
= [ e = t/R)elt) dN() — ()
— /f(x—t/k; £) dx4(t) /f £) dx4(t)
= [ =t/k) = f@)e) dN(0)
Ainsi
(Mef = @) = | [T = D)) a0
([ 1Tt — ety axtn) ",

IA

ce qui donne

1/p
IS = fllp < ([ 1T = Fle(®) X))

D’apres de théoreme 81, ||y, f — f|% tend vers 0 lorsque & tend vers I'infini.
Comme

Tt = Fllpe@)] < CIFllp)Pe @),

le théoreme de convergence dominée permet de conclure. n

8.1.4 Régularisation

Théoréme 92. Soit f € LP(RY), g C' a support compact. Alors f* g est C!
sur R?, avec

fx9)= [ FODsig

Démonstration. Soit M tel que g(x) = 0 pour ||z|| > M. Soit R > 0. Par
définition

Fglz /fx—t £) dx4(t) /ga:—t ) dX(1).
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Ici, c’est bien sir la deuxieme écriture qui va nous intéresser. Supposons
|z|| < R. La différentielle de g(xz —t)f(¢) , vue comme une fonction de z, est
f(t)D,_¢g. Bien entendu

|[F () Dasgl < [F (O Dglloclpo,ran (t)-

f € LP et || Dyglloolpo,prar) € LY, donc | f|[|Dgl|ocllpo,r+a) est dans L. Le
théoreme de convergence dominée pour la différenciation sous le signe somme
donne alors le résultat voulu. O]

Corollaire 19. Soit f € LP(R?), g C* d support compact. Alors f* g est C*
sur R?, avec

D3(f+9) = [ FH)D 9.
ou on a supposé que |on| + |ag| + - - + || < k.
Démonstration. Par récurrence sur k. O]
Corollaire 20. Les fonctions C*° a support compacts sont denses dans LP.

Démonstration. Cela provient immédiatement du Théoreme B1 et du corol-
laire précédent. O

8.2 transformée de Fourier

Soit f € LY(R?). On appelle transformée de Fourier de f, et 'on note f
la fonction définie sur R? par

A

fa) = [0 pia) axtce).

Evidemment, f — f est linéraire, et comme |/ f(£)] < |f(¢)], est on a
vfe L (fllo <11

8.2.1 propriétés élémentaires

Pour f,g € L', on a

—Ixo=fa
- Tf(x) = 0 fx)
S g(x) = fla/N), alors g(z) = Af(\).

— Si g(a) = f(x)e'®, alors §(a > N f(z — ).
— [ f(z) d\'(u) = f(0)
La premiere propriété mérite qu’on consacre quelques lignes a sa preuve :
Frot) = [0 ([ e=wgtw ix'w) axi)
= ([0 - wgtw) axiw) axien)
-/ ( [ 10 = wetet gyt d)\d(u)> dAN(t)
= [(Fxe)@®) dx'(e),
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oit F(t) = f(t)e'™" et G(t) = g(t)e’™. Mais d’aprés 'équation (8)

[(F =) axie) (/F £)dN (1) )(/G £)dN (1) )

d’ou le résultat voulu.

8.2.2 Théoreme d’inversion
Théoréme 93. Soit f € LY(RY) telle que f € LY(RY), alors on a

1

f<x> = (27T)d

[ e fe) dx) pp.

Démonstration. On aura besoin du lemme suivant, qui sera démontré (au
moins une fois) en exercice.

Lemme 15. Soit G(z) = —~e 175, Alors G(z) = e I715 = (27)42G (x).

Pour k > 1, posons Gy(x) = k?G(kz). On a

(2 )d/

A

Gr(z) = Kk G(x/k) = 2m)Y2G(x/k).
On recommence :
a(x) = (27r)d/2kdé(kx) = (27T)dde(/€l') = (27T)de(£L'),

et comme Gy, est paire

o~

Gi(—) = (2m)"Gu(w),

soit

On a donc

f*Gr(z) = e BN GL() fy) dN(E) dA(y)

- G / DG (1) (1) V(1)

En utilisant le theoreme de convergence dominée, on voit que le terme de
droite tend vers 7 [ e~i@t) f(#) dM4(t) lorsque k tend vers infini. Mais
d’apres le théoreme 9:[1 le membre de gauche converge dans £! vers f. Comme
la convergence dans ,Cl entraine la convergence d’'une sous-suite presque par-
tout, l'unicité de la limite donne 1’égalité voulue. O
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8.3 Exercices sur la convolution et la trans-
formée de Fourier

Exercice 110. Soient f et g € L1(R™). Montrer que si f (resp. g) est nulle
presque-partout en dehors d’un ensemble A (resp. B) alors f x g est nulle
presque-partout en dehors de A+ B = {a+ b;a € A, b € B}.

Exercice 111. (*)Calculer le produit de convolution f % g des fonctions
suivantes définies sur R (a > 0,0 > 0) :

L f(z) = exp(—25) et glz) = exp(—32).
(On admettra que fexp(—%) dr = +/27.)

2. f(z) =l_q(x) et g(x) =T_py(x)

Exercice 112. (*)Pour tout entier n on définit la fonction g¢,(z) = (1 —

2%)"l_1,1)(x). On pose a, = / gn(@) dz et ky = a; gn.
R

1. Montrer que la suite (a,) tend vers 0 et que a,, > n%rl pour tout entier
n.

2. Soit f une fonction uniformément continue sur R et bornée. Montrer
que f * k, converge uniformément vers f.

3. Soit f une fonction continue a support dans [—%, %] Montrer que la
11

restriction de f * k, & [—3, 5] est un polynéme de degré < 2n.

4. En déduire le théoréme de Weierstrass : Toute fonction continue d’un
intervalle [a,b] dans R est limite uniforme sur [a,b] d'une suite de
polynémes.

Exercice 113. Soit f =11
1. Déterminer fx fet fx fxf....
2. On note f¥1 = f et pour n > 2, fH7 = fH0=1 & ¢ Vérifier que
pour tout n > 1, f*" € LY(R) et que || f®7|, = 1.
3. Montrer que pour tout n > 2, f®" est de classe C* 2.

Exercice 114. (*)Soit E € B(R) tel que 0 < A(E) < +00.
1. Montrer que llg x1 _g est continue sur R.

2. En déduire que £ — F ={x —y/x € E, y € E} est un voisinage de
0.

22

Exercice 115. Soit f la fonction de R dans lui-méme définie par f(z) = e~ 2
pour x € R.

1. Déterminer la transformée de Fourier de f en remarquant que f est
solution d’'une équation différentielle linéaire.

2. Soit A une matrice carrée réelle symétrique d’ordre n définie positive.
Déterminer la transformée de Fourier de la fonction de R™ dans R
définie par f(z) = e~ pour x € R™.

Exercice 116. 1. Soit f € LY(R™) telle que f * f = 0. Montrer que
F=o0.
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2. Montrer que £!(R) n’a pas d’unité pour la convolution.

Exercice 117. Déterminer la transformée de Fourier de la fonction indica-
trice d’un intervalle [a,b]. Montrer que Ty 4y * Ij_y 1) est la transformée de
Fourier d'une fonction de L'(R) qu’on déterminera.

Exercice 118. Calculer la transformée de Fourier de la fonction f de R dans
lui-méme définie par f(z) = e~ pour x € R (ot @ > 0). En déduire la

transformée de Fourier de la fonction g : v — ———.
a? + x?



Chapitre 9

Convergence presque sire, loi
des grands nombres

9.1 Inégalités classiques

9.1.1 Inégalité de Markov

Théoréme 94. Soit X une variable aléatoire positive, intégrable. Alors, on

a
EX
Va>0 P(X>a)<—.
a

Démonstration. Comme X est positive, on a

EX = /Qx dP(w) > ./{X>a} x dP(w) > /{X>a} a dP(w) = aP(X > a).

9.1.2 Inégalité de Tchebytchef

Théoréme 95. Soit X une variable aléatoire admettant un moment d’ordre 2.

Alors, on a
Var X

5 -

Va>0 P(X-EX|>a)<
a

Démonstration.
P(|X —EX| > a) =P(|X - EX|* > a?)

Il suffit alors d’appliquer l'inégalité de Markov a la variable aléatoire
Y = |X — EX|?>. Comme EY = Var X, I'inégalité s’ensuit. O

9.2 Convergence presque siire

Définition : on dit qu'une suite de variables (ou de vecteurs) aléatoires
(X )n>0 converge presque strement vers une variable (ou un vecteur) aléa-
toire X lorsqu’il existe un ensemble mesurable ' C Q) tel que P(2) =1 et
que

Vwe Q' CcQ X, (w) = X(w).

133
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On écrit alors X,, —>— X.

n—-+00
La convergence presque sﬁre n’est autre que la convergence presque par-

tout relativement a une mesure de probabilité. On a alors les résultats clas-
siques suivants : si X, p'—i) XetY, 22V, (avec X et Y dans RY,
n——+0oo

n——4oo
d > 1) alors

— VYaeR aX, 225 aX.
n—-+00
— X, +Y, s X4y,
n—-+oo
— (X, Y,) 22 (X,Y).
n—-+o0o

Plus généralement, si X;,...,X,,..., X sont a valeurs dans un ouvert O et
p.s. . . , .
que X, —+> X, alors pour toute fonction f continue définie sur O, on a
n——+0oo

p.s.
F(Xn) = [(X).
Il peut étre intéressant de remarquer que la convergence presque stire

d’une suite de vecteurs aléatoires est équivalente a la convergence presque
stire de chacune des composantes.

9.2.1 Rappels d’analyse

En probabilités, le retour aux ¢ est tres fréquent. Si 'on ne veut pas que
cela devienne trop compliqué, il importe de bien connaitre les outils d’analyse
permettant de simplifier les choses.

Pour toute suite (z,),>0 de nombres réels, on peut définir

lim =z, = lim supuxg
n—-+o0 n—+00 p>p
et
lim =z, = lim inf z;.
n—-+o00 n—+00 k>n

Ces deux limites existent toujours dans R = R U {—o0; +-00}. La suite (z,),
converge dans R si et seulement si ces deux limites sont égales. Rappelons
quelques propriétés des limites supérieures.

— Pour x € R

lim z, =2 < lim |z,—2|=0
n—+oo N——4-00

lim 2, <M <= Ve>0 {n:x,>M+c}estfini (9.1)

n—-+o0o

lim z,>M <= Ve>0 {n:x,>M—c}estinfini (9.2)

n—-+o0o

— En prenant la contraposée de (81) et(22) , on a

lim z,>M <= 3e>0 {n:x,>M+c} est infini

n—+oo

lim 7, <M <= F>0 {n:z,> M —c} est fini

n—-+o0o
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n—-+oo n—+00 n—-+o0o

Nous verrons en exercice un exemple ou l'inégalité est stricte

9.2.2 Limites supérieures, inférieures d’ensembles

Si (An)n>o0 est une suite d’ensembles, on note

Iim A,= N U A,
n——400 n>1 k>n

et
an An = U N Ak

n—-+o0o n>1  k>n

Ainsi la limite supérieure d’une suite d’ensembles est I’ensemble des points qui
appartiennent a une infinité de ces ensembles, tandis que la limite inférieure
d’une suite d’ensembles est I’ensemble des points qui appartient a tous ces
ensembles a partir d’un certain rang.

Ainsi, dire que {n : X,,(w) > M —¢} est infini , c’est dire que w appartient
a  lim {w:X,(w)>M—c}.

n—-+oo

On en déduit

{ Im X, >M}= N lm {X,>M—¢} (9.3)

n—+o00 >0 pstoo
Par ailleurs, dire que
{n:x, > M+ e} est fini

c’est dire qu’a partir d’un certain rang , on a x,, < M + . Donc si w est tel

que {n: X, (w) > M +¢c} est fini , c'est que w € lim {X,, < M +¢}. On

n—-+o00
en déduit que

{ Tim X, <M} = n lim {X,<M+e¢} (9.4)

n——+o0 e>0  n—+oo

Si on remplace X,, par —X,, et M par —M dans (84), on obtient :

{ Tm —X,<-My= N lim {-X,<-M+e)

n——+o0o e>0  n—+4oo
Soit
{ lim X,>M}= N lim {X,>M—c¢} (9.5)
n—-+oo e>0 n—-+oo

Et en passant aux complémentaires dans (84) et (83H), on a

{ Im X,>M}= U Ilim {X,>M+e¢} (9.6)

n——+o0o e>0  notoo
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et
{ Im X,<M}= U Tm {X,<M-¢} (9.7)

n——4oo e>0 n—-+oo
Si on fait subir & la formule (83) les mémes transformations qu’a (64),
on peut obtenir 3 autres formules.

Dans la pratique, comment fait-on si I’on veut montrer que lim Xn =
)
n—-+00

M presque stirement 7 Comme vous 'avez deviné, on montre lim X, > M
n—-+oo

presque stirement, puis lim X,, < M presque stirement Comme la suite
n—-+oo

lim {X, > M — ¢} est monotone en ¢, on a
n——+o0o

n—-+o0o n—-+o0o

L’avantage est que l'intersection est maintenant dénombrable. Or, on a le
résultat classique tres utile suivant :

Théoréme 96. L’intersection d’une famille dénombrable d’événements est
de probabilité 1 si et seulement si chacun des événements est de probabilité

1.

Démonstration. Soit D un ensemble d’indexs dénombrable. (A, ),ep une fa-

mille d’événements indexée par D. On pose A = ﬂD A,,. Pour tout n,
ne

A C A,, donc P(A) < P(A,). Ainsi si P(A) = 1, on a pour tout n € D

P(A,) = 1. Réciproquement, on a

P(AY) = P( U A°)

nebD
< X P(45)
nebD
< >0
nebD
Donc P(A)=1—-P(A°)=1—-0=1. O

Pour prouver que lim X, > M presque stirement, il suffit donc de
n—-+0o

prouver que Va < M P( Iim {X,>a})=1

n—-+4o0o

De la méme maniére, on voit que pour avoir lim X, < M presque
n—-+0oo

strement, il suffit donc de prouver que Ya > M P( lim {X, <a}) =1,

n—-+o00

on de maniére équivalente que Ya > M P( lim {X, >a})=0.

n—+0o00
On peut donc énoncer le théoreme suivant
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Théoreme 97. Soit X,, une suite de variables aléatoires et M un réel. On
suppose que

1.V a<M P( lim {X,>a})=1

n—-+00

2. a>M P( lim {X,>a})=0

n—-+00

Alors

lim X, = M presque stirement.
n—-4o0o

Le théoreme suivant trés important en est une application directe

Théoréme 98 (Critere fondamental de convergence presque-sire). La suite
de variables aléatoires X,, converge presque surement vers la variable aléatoire
X si et seulement si

Ve>0 P( Tm {|X.— X|>¢})=0.

n—-+00

Démonstration. 1l suffit d’appliquer le lemme précédent a la suite de variables
aléatoires (|X,, — X|)n>0, avec M = 0 et a joue le role de e. O

9.3 Convergence en probabilité

Définition : On dit que (X,,) converge en probabilité vers X si

Ve>0 lim P(|X,—X|>¢)=0.

n—-+o00

9.3.1 Comparaison avec les autres modes de conver-
gence

Convergence dans L” et convergence en probabilité

Théoréme 99. La convergence dans LP (p > 1) implique la convergence en
probabilité

Démonstration.

EllX, — X7
< .

P([|Xn — X = &) = P(| X, = X[|” > €”) p

Convergence presque siire et convergence en probabilité

Théoreme 100. La convergence presque sture implique la convergence en
probabilité.
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Démonstration. Soit € > 0. D’apres le théoreme B8, on a
P( Iim {|X,—X|>¢})=0.
n—-—+oo
Or, d’apres le théoreme de continuité séquencielle décroissante, on a
P( lim {|X,—X|>¢})= lim P( U {|X;— X]|>¢})
n—-+oo n—-+00 kZR

Comme
0<P(Xn = X[2¢) <P( U {[Xi = X| > ¢}),

on en déduit que

lim P(|X, - X|>¢)=0.

n—-+00

Comme ¢ est quelconque, on peut dire que X,, converge en probabilité vers
X. m

9.3.2 Loi faible des grands nombres

Théoréme 101. Soit (X,,),>0 une suite de variables aléatoires de méme lot,
admettant un moment d’ordre 2 et deux a deux non corrélées.
On pose

n 1

k=1
Alors
1. M, ﬁ EXy. On dit que M, converge en moyenne quadratique
vers EXj.

2. Et donc M, SN EX,.
n—-+o0o

Démonstration. EM, = %ESn = > EX;, = %nEXU = EX,. Par consé-

quent E|M, — EXy|?> = Var M,, = 2 Var S,,. Comme les X}, sont 2 & 2 non
, n
corrélées, on a

Var S,, = ZVaer =n Var X;.
k=1
On a donc Var X
E|M, — EX,|? = Var M, = ———1, (9.9)
n

qui tend bien vers zéro.

9.4 Lemmes de Borel-Cantelli

9.4.1 Premier lemme de Borel-Cantelli
Théoréme 102. Soit (A,)n>1 une suite d’événements observables. Si la série

de terme général P(A,,) est convergente, alors P( lim A,) =0.
n—-+00
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Démonstration. On pose B, = kU Ay. la suite (B,,) est décroissante, et
>n

I'intersection des (B,,) est, par définition, lim A,. D’apres le théoreme de
N——+00

continuité séquentielle décroissante, on a donc

0<P( Tim A,) = lim P(B,).

N—y 400 n—-+00

Or
P(B,) =P( U Ay) < > P(Ay) =1,
k>n k>n

Comme r, est le reste d’ordre n d’une série convergente, r, est de limite

nulle, et donc, par comparaison P( lim A4,) = 0. ]
n—+o0o

9.4.2 Deuxieme lemme de Borel-Cantelli

Le deuxieme lemme de Borel-Cantelli est une espeéce de réciproque du
premier, dans le cas ou les événements considérés sont indépendante. Ici, on
choisit de présenter d’emblée une généralisation du deuxieme lemme de Borel-
Cantelli, die & Erdos et Renyi (1959). Le théoreme classique s’en déduira
aisément.

Théoréme 103 (Erdos-Renyi). Soient (A,),>1 une suite d’évévements.
On pose

n +oo
A&/ZIEZ]L% et N = E:HAk
k=1 k=1
m, =Y P(4;) = EN,

k=1

Ona lim A, ={N = +oo}.

n—-+00
Si
, . Var N,
lim m, = +o0 et lim =0,
n—-+0oo n—-+o0o 7n%
alors
P( lim A,) =1.
n—oo
Démonstration. Pour m,, > a, on a
P(N <a) < P(N, <a)
Var N,,
E; PK|ALL_'n1n|Ei7nn'_(w E;“jy:A;Aﬁ
(my, — a)?

En faisant tendre n vers +oo, on en déduit que
Vae N P(N <a)=0.
Ainsi

P(N < 4o00) =P( lim T {N <a})= lim P(N<a)= lim 0=0.

a—+o0 a——+00 a——+00
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Théoréme 104 (2°m¢ lemme de Borel-Cantelli). Soit (A,),>1 une suite
d’événements indépendants. Si la série de terme général P(A,) est diver-
gente, alors P( lim A,) = 1.

n——+00
Démonstration. On va appliquer le théoreme précédent : comme les (Ag)r>1

sont indépendants, leurs indicatrices sont des variables aléatoires indépen-
dantes, et donc

k=1 k=1 k=1
+o0o
Ainsi ¥ — L Comme lim m, = Y P(A;) = +oo, le résultat
n n n—-+oo k=1
s’ensuit. O

Exercice : La conclusion du 2°"¢ lemme de Borel-Cantelli reste-t-elle
vraie si l'on suppose seulement que les (Ag)r>1 sont deux a deux indépen-
dants ? Que les (Ay)x>1 sont négativement corrélés®?

Théoréme 105. Soit (X,,),>0 une suite convergeant en probabilité vers X.
Alors, il existe une sous-suite X, telle que X, kp'—s'> X..
—00

Démonstration. On pose ng = 0, puis, pour k > 1 :
. 1 1
ng = inf{n > np_; P(|X, — X| > ) < —}
k 2k
A k fixé, P(|X, — X| > 2) tend vers 0 quand n tend vers l'infini, donc on a

bien pour tout k£ : ng < +o0.
Maintenant, on a pour tout k£ > 0 :

1 1
1

Comme la série de terme général converge 5, le premier lemme de Borel-
Cantelli nous permet d’affirmer que

P( T {|X., — X| > 1)) =0

k—o0

ce qui est équivalent
. 1
P( lim {|X,, —X[<)}) =1,
k—00 k

ce qui veut dire que pour presque tout w, il existe un ko(w) tel que

1
k?
ce qui implique bien str que X, (w) tend vers X (w) pour P-presque tout
w. ]

1. c’est & dire que P(A; N A;) < P(A;)P(4;) pour i # j

k= ko(w) = [ X, (w) = X(w)] <
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9.5 Loi forte des grands nombres

9.5.1 La loi forte des grands nombres

Théoréme 106. Soit (X,,),>1 une suite de variables aléatoires deuzr d deux

indépendantes, de méme loi . On suppose que p admet un moment d’ordre

1. Alors
X1++Xn p-.S.

n n—-+00

9.5.2 Probabilités et fréquences asymptotiques

Théoréme 107. Soit (A,)n>0 une suite d’événements observables indépen-
dants de méme probabilité p. Pour w dans l'univers @ On note N,(w) le
nombre d’événements qui sont réalisés parmi Ay, ..., A,. Ainsi, on a

n 1
Nn = Z]IAk et fn = *Nn.
k=1 n

Alors il existe un événement observable Q C Q avec P(Q C Q) =1 et
VweQcQ fulw)—p.

Démonstration. 11 suffit de poser Xj = 14, et d’appliquer le théoreme MG,
X} admet bien un moment d’ordre 1 car 0 < X < letl'ona EX; = P(A;) =
P. 0
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9.6 Exercices sur la convergence presque siire

Exercice 119. Soit (X,,),>1 une suite de variables aléatoires indépendantes

X24-+X2
n

suivant la loi A(m,o?). Montrer que la suite L convergence presque

strement et déterminer sa limite.

Exercice 120. Soit (X,,),>1 une suite de variables aléatoires identiquement
distribuées telle qu’il existe o > 0 avec E exp(a|X;|) < +o0.
Montrer que

Exercice 121. (*)
Soit (X, )n>1 une suite de variables aléatoires indépendantes suivant une
loi exponentielle de parametre 1.

Xn
Inn"

Calculer lim
n—-+4oo

Exercice 122. Soit (X,,),>1 une suite de variables aléatoires indépendantes
suivant la loi N'(0,1).

1. Calculer Iim \/%

n—-+00

2. On se donne maintenant une deuxieme suite (Y;,),>1 de variables aléa-
toires indépendantes suivant la loi A/(0, 1), cette deuxieme suite étant
indépendante de la premiere. Comparer

At T et Tm )
e m —F——=C m ——F—7—.
n—1>I—§I—loo 2lnn n—1>+oo 2Inn n——+oo 2Ilnn

Exercice 123. (*)

Soit (X,)n>1 une suite de variables aléatoires indépendantes telles que
pour tout n, X, suive une loi binomiale B(n, W) Déterminer 1’ensemble
des valeurs d’adhérences de la suite (X,)

Exercice 124. Soit p € [0,1] et (U,),>1 une suite de variables aléatoires
indépendantes suivant la loi uniforme sur [0, 1]. On note 7,, le nombre de fois
ou le graphe associé a (U,) coupe la droite d’équation y = p avant le temps
n. Dans notre exemple, p = 0.4 et Ty = 8.
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1 T T T T
trajectoire
y=pr
0.8
0.6 /\
0.4
\_
0.2
O 1 1 1 1

5

10

15

20

Montrer que % converge presque stirement et déterminer la limite.

Exercice 125. Soit (X,,),>1 une suite de variables aléatoires de Bernoulli
indépendantes de parametre 1/2. On pose

2+ X, 1
M”‘( 1 2+Xn>

et
An:Mann,lx...ngMl.

1. Montrer que la suite (det A,,)'/" converge presque stirement et déter-
miner la limite.

2. Soit (z,y) € R*\{(0,0)}. On pose

Montrer que

n—-4o0o

||Yn||1/n p- {\\;_E S% Tty
siz4+y#0

Exercice 126. Soit (X,,),>; une suite de variables aléatoires telles que pour
tout n, X, suive une loi de Poisson de parametre A,, ou (A,),>1 est une
suite tendant vers 0 en U'infini. Montrer que la suite (Y,),>1 définie par Y,, =
X1X5 ... X, est nulle a partir d'un certain rang.

Exercice 127. Soit (X,,),>1 une suite de variables aléatoires telles que pour
tout n, X,, suive une loi de Poisson de parametre \,, avec

+o0 9
> A< +oo
n=1

Montrer que la suite (X,,),>1 est presque sirement bornée.
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Exercice 128. Soit (X,,),>1 une suite de variables aléatoires indépendantes
telles que pour tout n, X, suive une loi de Poisson de parametre A, avec

An = o(Inn)

Montrer que la suite (Y;,),>1 définie par Y,, = X1 X5 ... X, est nulle a partir
d’un certain rang.

Exercice 129. Soit (X,,),>2 une suite de variables aléatoires indépendantes
telle que pour tout n, X, suive une loi de Poisson de parametre 2 In n. Montrer
que

X X3... X, ——

n—-+o00

p.s. 0 avec probabilité p
400 avec probabilité 1 —p’

ou p €]0,1[.

Exercice 130. Soit (X,,),>1 une suite de variables aléatoires indépendantes
identiquement distribuées avec E|X;| = +oo0.

| Xn|
n

1. Soit @ > 0. Montrer que lim

n—-+o00

> a p.S.

2. On pose S,, = > p_; Xi. Montrer que Sng % = 400 p.s.
n>

Exercice 131. (*)Lemme de Kochen—Stone

1. Inégalité de Paley-Zygmund.
Soit X une variable aléatoire de carré intégrable et d’espérance stric-
tement positive. Montrer que pour tout A €0, 1],

2 (EX)?

B(X > AE[X]) 2 (1 - V) prgr

Indication : majorer et minorer E[Xx<y].

2. Soit (By), une famille d’événements. Montrer que

IP’( lim Bn>2 Iim P(B,).

n—-+00 n——+0oo

+o00
3. Soit (By)n>1 une famille d’événements telle que > P(B,) = +oo.

n=1

n
On pose N,, = >_ 1lp, et on rappelle que
k=1

{ Tim B,}={ lim N, = +o0}. Montrer que

n——+00 n—-+00

- _ EN)
P i B, | > i .
(ﬁ% >— Jm e

Ce résultat est le lemme de Kochen—Stone.

4. Que se passe-t-il lorsque les événements B, sont deux a deux indé-
pendants ?
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Exercice 132. (*) Une application du lemme de Kochen—Stone.

Soient X1, ..., X, des variables aléatoires indépendantes identiquement dis-
tribuées, avec P(X; = 1) = P(X; = —1) = 1/2. On construit alors la marche
aléatoire simple (S,),>1 en posant S, = X; + --- + X,,. On rappelle les
résultats suivants qui ont été vu précédemment.

— On a I’équivalent en l'infini P(S,, = 0) ~ \/% (voir l'exercice 77).

— Pour tout A € Q = 91 o((Si)in), onaP(A) =0ouP(A) =1 (c’est

le corollaire ?? obtenu comme conséquence de la loi du 0-1 de Hewitt
et Savage).
A la lumiére de ces résultats et du lemme de Kochen-Stone vu a 'exercice
précédent, on veut montrer que

P(S5,2 = 0 pour une infinité de valeurs de n) = 1.

1. On pose B, = {Sy,2 =0} et N,, = > 1, . Montrer que
k=1

EINZ] = B[N, 423" 3" P(Soye = O)P(Sagerpe) = 0),

k=2 p=1

puis qu’il existe une constante C' telle que

n k-1
1
Vn>1, E[N,(N,—1)]<C> Y cppavec cpy = .
k=2 p=1 p k - D

k—1
2. On pose s, = > ¢,%. Montrer qu’il existe une constante D telle que
p=1

Vk>2, s < Dloik.

Indication : on pourra remarquer que pour p < k/2, ona ¢, 5 > Cg_p-

3. Montrer que

lim LE[N"%] < 400
1m .
n——+0oo (EHanD2

4. Conclure.
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Annexe A

Indications

A.1 Exercices sur les compléments

Indication 1 1. Deviner la valeur de la limite supérieure, exhiber une
sous-suite appropriée afin de minorer la limite supérieure, puis majorer
a, par une suite convergente.

2. Dans le cas particulier, on peut, comme précédemment, utiliser des
majorations.

3. Dans le cas général, il faut revenir aux définitions.

Indication 2 On peut faire la remarque simple suivante, trés utile dans les
problémes d’inf et de sup : pour a,b dans R

(a=b) «<—= (VzeR (z>a) < (y>a)).

Indication 3 On peut utiliser le résultat de la premiere question de I'exer-
cice précédent.

Indication 4 1. A partir d’'un certain rang, a, ...et b, ...donc a, + b,

2. On pourra comparer 'ensemble des valeurs d’adhérence de (b,) et
I'ensemble des valeurs d’adhérences de (a,, + by,).

Indication 5 1. Commencer par remarquer que Ug,, < Uk, + Uy, PUIS
procéder par récurrence sur n.

2. Commencer par montrer que pour tout &, lim “* < k.
n——+0oo

3. inf =< lim < fim e
n—-+oo n—-+oo n—-+oo

4. On pourra considérer u,, = log|[|A"|]|.

5. On pourra considérer u,, = log|A,| et construire une injection de A1,
dans C A, x A,.

Indication 6 Pour n assez grand, (1 —¢)a < (a,)" < (1 +¢)a.

147
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Indication 7 Commencer par montrer que la série de terme général u; di-
verge. A partir de la, on peut remarquer que pour tout ¢

N N

1= Ngr}rloo;)<; )™

ce qui donnera les inégalités sur les limites inférieure et supérieure de la suite.

Indication 8 1. On peut faire une comparaison avec une intégrale ou
remarquer que log(n) —log(n — 1) ~ 1.

2. Dans la somme représentant S, — f(0)H,, traiter séparément les k
tels que k/n < « et les autres.

3. Choisir g telle que % se prolonge en une fonction continue sur [0, 1].

A.2 Exercices sur la théorie de la mesure

Indication 9 Remarquer que f~'(A4) = f~1(AN{0,1}) = f~{(An{0}) U
f7HAN{1}).

Indication 10 Poser F' = f(£2) et revenir a la définition d’une tribu engen-
drée par une application.

Indication 11 1. Remarquer que {f < g} = U, {f < & < g} et utiliser
la séparabilité de R.

2. Que signifie “A = B” presque partout ?

Indication 12 Pour les deux premieres questions, relire le cours, le résultat
est %. Pour la deuxiéme question, penser aux sommes de Riemann.

Indication 13 Pour la deuxieme question, on pourra d’abord observer que
certaines des conditions des axiomes sont vérifiées sans hypothese supplé-
mentaire sur f.

Indication 14 On procedera par double inclusion. On rappelle quesiC C D,
o(C) C o(D).

Indication 15 Q est dense dans R, ainsi chaque réel est limite d’une suite
croissante et d’une suite décroissante.

Indication 16 1. Exprimer C' en fonction de A, et As.

2. Exprimer B en fonction des (A,)yep-

Indication 17 Pour F fermé de E, on pourra considérer la fonction dp(x) =
inf{d(z,y);y € F'}.

Indication 18 1. Vérifier que vous connaissez les définitions des mots
intervenant dans 1’énoncé, en particuler la notion de tribu engendrée
par une application et celle mesurabilité par rapport a un couple d’es-
paces mesurés.
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2. Si Y prend les valeurs yy,...,y,, on cherchera a écrire Y = f o X,
avec f(z) = X7, yila,.
3. On peut poser ¢,(z) =
X =p,0Y.
Traiter le cas ol g est une indicatrice, puis une fonction étagée, puis une
fonction positive,. . .

[nz]

n

Iio (||]|) et construire f,, telle que f, o

Indication 19 1. On rappelle que si x € A, tout ouvert contenant x
contient un élément de A.

2. On pourra montrer que pour tout y € O, in existe z € Q*d et r € Q
avec {z} C B(y,r) C O.

3. Considérer la réunion de tous les ouverts de mesure nulle.

A.3 Exercices sur le formalisme probabiliste

Indication 20 On pourra commencer par remplacer un seul élément de la
famille par son complémentaire.

Indication 21 1. Comme ( est croissante, il suffit de montrer que pour
tout A, il existe s > 1 tel que ((s) > A. On pourra revenir aux sommes
finies

2. Paramétrer pN* & 'aide d’une famille d’entiers et utiliser le principe
de partition.

3. Tout nombre différent de 1 a un diviseur premier. Penser aux théo-
remes de continuité séquentielle des probabilités.

4. Revenir a la définition de I'indépendance.
5. Mettre ensemble les questions précédentes

6. Commencer montrer que pour tout A, au moins une somme partielle

de la série de terme général (—log(1l — i)) dépasse A.

7. (a) S’inspirer de la premiére question et remarquer qu’aucun entier n’a
de diviseur qui le dépasse.

(b) Faire tendre ¢ vers l'infini.

Indication 22 1. On numérote les mathématiciens, et a chaque mathé-
maticien, on asocie le numéro du propriétaire du chapeau qu’il prend.

2. On pourra utiliser le principe de partition.
3. Quel est 'endomorphisme réciproque ?
4. Relire les résultats précédents

5. On pourra remarquer que la série est alternée.

Indication 23 Remarquer quune union dénombrable d’événements est de
probabilité nulle si et seulement si chacun est de probabilité nulle.

Indication 24 Utiliser la formule de Bayes.

Indication 25 1. Ay =dNNQ,.
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2. On déterminera un entier d tel que N_; Ay, = Ag.

3. On remarquera que deux nombres sont premiers entre eux si et seule-
ment si ils n’ont pas de diviseur premier commun.

4. Deux méthodes sont possibles : utiliser la formule du crible (formule de
Poincaré) ou utiliser le résultat de ’exercice 1. Cette derniere méthode
est utilisée dans le sujet du capes 2003.

Indication 26 Commencer par choisir clairement 1'espace €.

Indication 27 On pourra conditionner par la valeur prise par 1'ensemble
des trois nombres tirés au sort.

Indication 28 1. Q= {(z1,...,Tass) € {?

-
T e ey =
ai +bj} estun choix possible.

2. Si l'on note I = { le graphe coupe la diagonale.}, on pourra montrer
que
P(IN{A gagne le premier échange}) = P(/N{B gagne le premier échange}).

Indication 29 Faire en sorte que le résultat soit nul.

Indication 30 1. On pose ng = 0, sg = 0, puis pour £ > 0 : ngyqy =
inf{n > ng; sp +un < £} €t Spp1 = S + Un,, ;-

2. Utiliser la formule donnant ¢(n)/n en fonction de ses facteurs premiers
et utiliser la divergence de la série des inverses des nombres premiers.

A.4 Exercices sur les intégrales

Indication 31 On note f,; la fonction affine par morceaux, valant 1 avant
a, 0 apres b. On peut remarquer que oo o] < foat1/n < oo at1/n]-

Indication 32 Utiliser la transformation d’Abel.

Indication 33 On pourra montrer qu’il existe une constante A telle que
g < Alfl.

Indication 34 1. Pour tout ¢ dans R, on pourra montrer que 1’événe-
ment {Y <t} est mesurable.

2. On pourra montrer que Y (x) = Z(x) pour u presque tout x.

3. Utiliser le fait que T préserve la mesure p

Indication 35 1. Vérifier les axiomes.

2. Commencer par le cas ou f est étagée.
Indication 36 Utiliser le théoréme de convergence monotone.
Indication 37 Utiliser le théoréme de convergence dominée.

Indication 38 On pourra prendre A = {f > 0}.
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Indication 39 1. On pourra démontrer que pour n > 1, 0 < w <
14 .

2. (1+z)"> ...

14+nz 3
3. Pour n >3, a50% < g

Indication 40 1. Procéder par récurrence.
2. Faire un développement en série.
3. On peut développer avec la formule du bindome dune part, d’autre
part remarquer que /01(1 —x)"In(x) dor = /1 2" In(1l — ) dz. Une

intégration par partie donne alors le résultat, pourvu que la primitive
soit choisie judicieusement.

Indication 41 Remarquer que logx + i > 0 et développer €” — 1 en série.

Indication 42 Développer en série et utiliser le théoréeme de convergence
dominée.
1 e ”*

Indication 43 On pourra remarquer que —— = ==

Indication 44 On pourra remarquer que \%] < 2(zlogx)? sur [0,1],

développer en série. Le calcul des sommes requiert des intégrations par par-
ties.

Indication 45 Pour 'existence, séparer les problemes en 0 et l'infini. En-
suite, intégrer par parties.

Indication 46 1. cos? = 1 — sin? et intégrer par parties.

2. Calculer WyWj.

Indication 47 1. Appliquer le théoréme de convergence dominée.

2. Faire (au moins)un changement de variable.
Indication 48 Faire (au moins)un changement de variable.

Indication 49 1. On pourra écrire [,/ z"e™® dx = [/ (x+n)"e~("+2) dz.
2. Remarquer que I'(n+1) ~ [Z" z"e~® dx, puis faire un changement de

variables affine.

3. On traitera séparément suivant le cas ou z > 0 ou z < 0. Dans les
deux, on pourra penser a un développement en série.

4. Utiliser le théoreme de convergence dominée.

Indication 50 1. Procéder par récurrence.

1 e ®
2. On pourra remarquer que —— = 7=

3. Faire un changement de variable.

4. Développer le cosinus en série entiere. Faire attention pour intervertir
la somme et 'intégrale.
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Indication 51 1. La convergence se montre classiquement a l’aide d'une
intégration par partie. Pour le reste, on pourra chercher un équivalent
de [t @\dt (penser a faire un changement de variable).

nm

2. Voir les théoremes généraux de régularité du cours.

3. Il faut montrer que F' est continue en 0. En réalité, ca ne coute pas
plus cher de montrer que F' est continue sur R,. On pourra écrire

1 int +00 int
F(z) = / e’”&% dt+/ efxtﬁ%dt
0 1
I sint too 1
_ / et 4 Im / D2 gy
0 t 1 t

Penser a une intégration par parties pour le 2e morceau.

Indication 52 1. Couper l'intégrale en 2. La partie entre 0 et 1 ne pose
pas de difficulté; pour le reste on pourra faire une intégration par
parties.

2. On pourra commencer par montrer que pour 0 > 0,

o) = e@esp( [ -

1T—U

«

du).

3. Utiliser un théoreme de convergence dominée.

4. Faire un changement de variables.
Indication 53 Fubini est ton ami.
Indication 54 Tonelli aussi.

Indication 55 1. Faire une intégration par parties.
2. oui!
3. (a) Faire une intégration par parties.

(b) Pour le premier point, noter que W est continue, de limite 1 en
I'infini. Enfin, appliquer le théoreme de convergence dominée.

(c) On peut noter que W(z)/x* est continue sur R, avec des limites
finies en 400 et en 0. Pour la derniéere inégalité, on pourra écrire

/;00 U(Au) du:/xl U(Au) du+/1+°° U(Au) o

u? u?

u2

(d) Dans un premier temps, dominer |Ry(z) — R(z)| par une fonction
intégrable. Dans un second temps, pour A < 1, dominer |Ry(z) —
R(z)| par une fonction intégrable ne dépendant pas de A.

4. Utiliser le théoreme de Fubini.

5. On pourra écrire
+oo Ry(z) [ Ra(z) +/+°° Ry()
0 Voo Jo o 1 NG

le premier morceau se traite aisément par convergence dominée, le
deuxiéme nécessite une intégration par parties comme précédemment.
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Indication 56 Une intégration en x pour commencer donnera

J =4
Z 2l<; +1)2
Pour intégrer en y, noter que 1+ 2zy + y? = (y + z)? + (1 — y?) et faire le
changement de variable v = yrzT
s V1—a22
Indication 57 1. Utiliser une partition de I'espace R¢.

2. On pourra montrer qu’il existe des constantes positives C' et D telles
que pour tout x avec ||z[|s > 1, on ait

C 1 D

lzlls — Ent(flzllo)™ — llzll3

3. Le plus simple ici est de montrer que f est C' par des théorémes
généraux, puis de calculer la différentielle dans une direction donnée.

4. On pourra utiliser le théoréme de C*-difféomorphisme. Pour le calcul
de la différentielle, il pourra étre intéressant d’écrire la matrice de D f,
dans une base orthogonale bien choisie.

Indication 58 On pourra intégrer des fonctions par rapport a la mesure de
comptage et utiliser le théoréeme de convergence dominée.

Indication 59 1. Remarquer que (SN H™), = S, N H, . Regarder le
dessin peut aussi aider.

2. Utiliser le théoréme de Tonelli (on peut encore regarder le dessin!)

3. On peut utiliser des symétries du modele pour réduire les calculs.
Ensuite on appliquera Fubini.

4. Noter que S est la réunion disjointe de SN HY et SN H™,

A.5 Exercices sur les lois
Indication 60 1. Pensez a discuter suivant les positions relatives de n
et k.
2. QQ est dense dans R.

3. Utiliser le principe de partition.
4. Ecrire P(D) = 1, avec D bien choisi.

Indication 61 Prendre X et Y deux variables indépendantes suivant cha-
cune une loi de Bernoulli de parameétre 1/2 et poser Z = |X — Y.

Indication 62 On prend 2 = {0,1}x{0,1}, F = P(w) C = {(0,0), (0,1)},{(0,0),(1,0)}}.
= 500+ 01) ® 5(60 + 1), Q = 5(50,0) + d(1.1))

Indication 63 Traduire les événements considérés en fonction de Y
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Indication 64 Poser z = AM et résoudre 'inéquation.

Indication 65 Dire que le maximum de n nombres ne dépasse pas z, c¢’est
dire que chacun ne dépasse pas .

Indication 66 Remarquer que 1 —m,, = max(l — X;,...,1—X,,).

Indication 67 A k fixé, il faut déterminer les valeurs de X qui sont telles
que Y = k.

Indication 68 Représenter graphiquement les domaines considérés.

Indication 69 1. On pourra montrer que X est T-mesurable, puis que
les A, sont o(X)-mesurables.

2. On montrera que I’ensemble cherché est {w € N; X (w) = 2x3x5x11}.

3. Le sens direct est le plus simple. Pour la réciproque, remarquer que si
A,, est T-mesurable, il doit contenir {w € N*; X (w) = X (n)}.

4. On montrera que A,, N A, = A,rn.
2

5. Remarquer que pour p assez grand 1 — pés >e v,

Indication 70 1. On pourra montrer que Q est la tribu de queue asso-
ciée a la famille (A,,),>1.

2. Un ensemble d’entiers est infini si et seulement si il contient au moins

un entier plus grand que n’importe quel entier fixé a I'avance. Ainsi,

on pourra montrer que pour tout ng, A =N U A
n>ng k>n
Indication 71 Pour la premiere formule, faire une intégration par parties;
pour la deuxieme, procéder par récurrence.

2
. . , . P , \
Indication 72 On pourra écrire e=2 = L(ze”7) afin de procéder & une

intégration par parties.

(M)

x

_r_

T on doit trouver par exemple

Indication 73 Si on pose a = 2arcsin

l1—cosa «o-+sino

p:

4 + 2
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Indication 74 1. On pourra remarquer que pour 7 # j, X; — X, est une
variable a densité.

2. Pour la premiere égalité, utiliser la question précédente ; ensuite uti-
liser le théoreme de transfert.

3. On pourra par exemple calculer Py ) sur des ensembles de type
|a, +o0[x]b, +00].

Indication 75 Commencer par calculer la fonction de répartition

A.6 Exercices sur les esperances

Indication 76 Si X désigne le nombre de fois ou I'on a obtenu le nombre
choisi, le gain est X —Iy—.

Indication 77 Une probabilité est l'indicatrice d’une espérance.

Indication 78 Interpréter le membre de gauche comme la valeur absolue
d’une covariance.

Indication 79 1. On montrera que E(X — a)? — 0% = (m — a)?.

2. Prendre q = “tan

Indication 80 Effectuer une transformation d’Abel.

Indication 81 Appliquer le théoréeme de transfert, et penser a la forme ca-
nonique des polynomes du second degré.

Indication 82 Appliquer le théoreme de transfert.

Indication 83 On pourra commencer par supposer que la loi est centrée
(c’est a dire que a + b = 0) et remarquer que | X — Y| < |X| + |Y]). On s’y
ramenera dans le cas général.

Indication 84 Fonction de répartition, ou transformation : vous avez le
choix !

Indication 85 On peut raisonner en termes de loi.

Indication 86 S’inspirer de I'exercice précédent et utiliser une transforma-
tion.

Indication 87 Appliquer I'exercice précédent.
Indication 88 Bien observer que X et Y sont indépendantes.

Indication 89 On pourra observer que l'application (x,y) — (ﬁ, y) réa-
y/n

lise un C'-difféomorphisme de R* x R% dans lui méme.

Indication 90 Remarquer que tout se passe comme si (X,Y) suivait la loi

uniforme sur 7' = {(z,y) e R} 0 <y <z < 1},
Si x et y sont solutions réelles de x*>—Sz+ P = 0, alors |[z—y| = v/S?2 — 4P
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Indication 91 1. Identifier la loi de S, et appliquer le théoreme de
transfert.

2. (a) Remarquer que [0, 1] est compact.

(b) Remarquer que

Bua)—10) = [, I -fw e[, JCH-fa)dp

n |82 —g|>e " "N

n

Indication 92 Si on note C, ’ensemble des cases controlées par la dame i,
d

et C' = U (;, on peut minorer |C| grace aux inégalités de Bonferroni. Dans
i=1

un second temps, on remarquera que si ¢ est une bijecttion de ’échiquier
dans lui-méme, les ensembles C' et ¢(C) se coupent deés que |C] > n?/2.

Indication 93 1. On prendra Q = B, ({1,...,n}).

2. Utiliser les relations entre ’espérance et la queue de distribution, puis
utiliser la relation de récurrence du triangle de Pascal.

Indication 94 1. On pourra remarquer qu’une rotation est une appli-
cation linéaire isométrique.

2. Remarquer que |X — Y| = /2U.

Indication 95 1. On trouvera comme variance b(0) + S0 2b(i)(1 —

2. Remarquer qu'une variance est toujours positive. On peut alors par
exemple appliquer le lemme de Fatou ou procéder de maniere plus
élémentaire.

Indication 96 1. Appliquer le théoreme de Tonelli et le théoreme de

Fubini.
2. Appliquer la question précédente a X = 2n et utiliser I'indépendance

des X;.
Indication 97 1. Considérer I'application qui échange la coordonnée 1

et la coordonnée 1.
2. On pourra remarquer que X; est une variable de Bernoulli.

3. On pourra remarquer et justifier que si i # j, (X, X3) a méme loi que
(Xi7 X]) :
4. Remarquer que P, s’annule en 0 et en n.

5. Penser a un tirage de boules indiscernables dans une urne.

A.7 Exercices sur les espaces L”

Indication 98 1. Cherchez un peu plus. ..
2. Découper R en intervalles de longeur 27.

3. Utiliser des équivalents.
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Indication 99 Etudier d’abord la convergence ponctuelle.
Indication 100 On pourra raisonner par 1’absurde.
Indication 101 On pourra utiliser des sous-suites.

Indication 102 Retrousser ses manches (ou équivalents).

Indication 103 Majorer /| f? + ¢?| par une fonction intégrable.
Indication 104 Passer a l'intégrale de Riemann.

Indication 105 1. Prendre X = [0, 1] et pour u la mesure de Lebesgue
sur [0, 1], choisir ensuite f,, telle que f,,(x) — 0 pour tout z € [0, 1] et
que l'on ait [ f, = 1.

2. Pour p entier s’écrivant p = 2" + k, avec 0 < k < 2", poser u, = 2%

Ensuite, poser ¢, (z) = max(1 — 7|z, 0) et finalement f,(z) = ¢, (z —

3. Symétriser 'exemple trouvé a la premiere question.
Indication 106 Utiliser I'inégalité de Cauchy-Schwartz.
Indication 107 Utiliser I'inégalité de Holder.

Indication 108 1. Utiliser I'inégalité de Holder.
2. (a) Considérer I'intégrale [, fdA comme une intégrale de Riemann.
(b) Remarquer que T'(f)(z) est bornée et décroit suffisamment vite a
I'infini.
(¢) Remarquer que f(x) = T(f)(z)+zT(f)'(x) et faire une intégration
par parties.
(d) Cherchez un peu plus. ..
© =" —f
3. (a) Pour le premier point, on pourra utiliser I'inégalité de Holder.
)

b

Utiliser la densité des fonctions continues a support compact dans

LP.

q
Indication 109 Considérer la suite (g,) définie par g, = |J;]]{ fl<n} SUr

{lf1 >0} et g, = O sur {f =0}) .

A.8 Exercices sur la convolution et Fourier
Indication 110 Si a =0 ou b= 0, alors ab = 0.

Indication 111 1. Pleins de calculs en perspective. On conseille de com-
mencer par exprimer [ exp(—p(x)) dx en fonction de A, B, C, lorsque
p(z) = Az> + Bx+ C et A> 0.

2. Commencer par identifier les points ou la convolée est nulle.
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Indication 112 1.1—22>1—xpour 0 <z <1.

2. On pourra montrer que pour tout ¢ €]0, 1],

4(1 - 5%)

Qn

[ k() — f2) < [ flloo +wr(9).

3. On pourra montrer que

% k() = 1/1/2 (1 (x— )" f(2) dt.

ap, J-1/2
4. On pourra commencer par le cas ot a = —1/4 et b= 1/4.
Indication 113 1. Pour éviter d’oublier des cas, se souvenir que le sup-

port de la convolée est inclus dans la “somme” des supports; la parité
peut également permettre de simplifier des choses

2. Remarquer que f®" est positive.

3. Procéder par récurrence.

Indication 114 1. Si I'on pose g = g x 1 _g, on peut remarquer que
9(x) = [p Tollpdp.
2. Remarquer que si g(z) # 0, z € £ — E.

Indication 115 1. Ah bah non! Vous 'avez déja eue, 'indication.

2. Réduire A dans une base orthonormale.

Indication 116 1. On pourra remarquer que la transformée de Fourier
est injective dans L'(R™))

2. Utiliser la transformation de Fourier et une fonction bien choisie.
Indication 117 On pourra utiliser la formule d’inversion.

Indication 118 On pourra utiliser la formule d’inversion.

A.9 Exercices sur la convergence presque siire

Indication 119 Appliquer la loi des grands nombres

Indication 120 Pour tout € > 0, appliquer le lemme de Borel-Cantelli aux

événements {—X2y > ¢}
2

(Inn)

Indication 121 Discuter en fonction de A la nature de la série de terme
général
X
P(—" > A).
(lnn )
Indication 122 S’inspirer de 'exercice précédent en utilisant un équivalent
pour la queue de la gaussienne.
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Indication 123 Pour une suite a veleurs entieres, les valeurs d’adhérences
sont les valeurs qui sont prises une infinité de fois.

Indication 124 On a T, = >2} Iy, |, <pya{u.<py- On pourra découper T,
en deux sommes de variables aléatoires indépendantes.

Indication 125 1. Passer au logarithme.

2. Ecrire M, sous la forme M, = PD, P~ et introduire la norme ||z||, =
1P~ 2 oo

Indication 126 On pourra remarquer que pour tout entier n, I’événement
“(Yn)n>1 est nulle a partir d’un certain rang” contient 'événement {X,, = 0}.

Indication 127 On pourra montrer que X,, € {0,1} a partir d'un certain
rang.

Indication 128 On pourra montrer que P(Y,, # 0) < exp(— kzl exp(—Ag)).

Indication 129 On pourra montrer que (X,,),>2 ne prend la valeur 1 qu'un
nombre fini de fois. Enfin, on montrera que

1 —+o00 ] 1
—p= nl;[2 ( - ﬁ)-
Indication 130 1. Utiliser le lemme de Borel-Cantelli et le lien série-

intégrale.

X
2. On pourra comimencer par montrer que sup % = 400 p.s. .
n>1

Indication 131 1. Sion note A ={X > AE[X]}, on pourra noter que
E[X] = E[X14] + E[XI4] < (E[X?]P(A)Y2 + AE[X].

2. Utiliser le lemme de Fatou.

3. On pourra remarquer que pour tout A €]0, 1],

{ Tm A >{ Tm {lu, > \P(4,)}}

n—-+o0o n—-+o0o
4. On redémontre le deuxieme lemme de Borel-Cantelli.

Indication 132 1. Développer le carré et noter que {X =0, X +Y =
0} ={X=0,Y =0}

2. On peut remarquer (et démontrer!) que pour p < k/2, ¢, > Cr—pi-
3. On pourra comparer des sommes et des intégrales.

4. 11 faut vérifier que I'événement est dans Q, puis montrer grace a
Kochen-Stone qu’il a une probabilité strictement positive ; enfin conclure
avec Hewitt—Savage.
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