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Introduction
Le cours contenu dans le présent polycopié reproduit pour l’essentiel le

contenu de divers enseignements de Licence que j’ai donnés à Orléans, puis à
Nancy. Le cours de ce polycopié a été un des ingrédients de base de l’ouvrage
« De l’Intégration aux Probabilités », que j’ai écrit avec Aline Kurtzmann
et que nous avons publié aux éditions Ellipses. Vous êtes invités à vous y
reporter pour compléter votre culture.

À la fin de chaque chapitre, le présent polycopié contient des exercices
qui serviront de base aux travaux dirigés du cours. À la fin du polycopié,
on trouve des indications pour chaque exercice. Il est recommandé de ne s’y
reporter qu’après avoir un peu cherché.

Certains exercices sont marqués d’une (*) : ce sont les exercices dont une
correction est proposée dans Garet-Kurtzmann. Cela ne veut pas dire que les
autres exercices ne méritent pas votre attention !
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Chapitre 1

Compléments d’analyse

1.1 La droite réelle achevée
On ajoute deux points à R que l’on note −∞ et +∞. On définit ainsi la

droite réelle achevée R = R∪ {−∞; +∞}. Notons ψ(x) = atan x pour x réel
ψ(+∞) = π/2, ψ(−∞) = −π/2.

ψ(x)

Homéomorphisme de (R, d) dans [−π/2, π/2]

1050-5-10

1.5

1

0.5

0

-0.5

-1

-1.5

Pour x, y dans R, on note d(x, y) = |ψ(x) − ψ(y)|. Il n’est pas très difficile
de vérifier que pour tous x, y, z dans R, on a

— d(x, z) ≤ d(x, y) + d(y, z)
— d(x, y) = 0 ⇐⇒ x = y
— d(x, y) = d(y, x).

On dit alors que (R, d) est un espace métrique.
Si (xn)n≥1 est une suite à valeurs dans R, on dit que (xn) converge vers

x si d(x, xn) tend vers 0.
On peut remarquer que ψ réalise un homéomorphisme croissant de (R, d)

dans [−π/2, π/2] (l’homéomorphisme réciproque est bien sûr un prolonge-
ment de la fonction tangente).

3
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Corollaire 1. De toute suite (an) à valeurs dans (R, d), on peut extraire une
sous-suite convergente.

Démonstration. ψ(an) est à valeurs dans l’intervalle compact [−π/2, π/2],
donc, il existe une suite φ(n) d’entiers strictement croissante et y ∈ [−π/2, π/2]
tel que ψ(aφ(n)) tend vers y. Par continuité de ψ−1, (aφ(n)) tend vers ψ−1(y).

Pour une suite (xn)n≥1 à valeurs dans R, on peut vérifier que (xn)n≥1
converge vers a dans R si et seulement si elle converge vers a dans R, que
(xn)n≥1 converge vers +∞ dans R si et seulement si elle tend vers +∞ lorsque
n tend vers l’infini, que (xn)n≥1 converge vers −∞ dans R si et seulement si
elle tend vers −∞ lorsque n tend vers l’infini.

On peut prolonger la relation d’ordre ≤ sur R, en disant que sont vraies
les relations “−∞ ≤ a” “a ≤ +∞” pour tout a ∈ R ainsi que “−∞ ≤ +∞”.

On peut alors énoncer le théorème suivant

Théorème 1. Toute suite monotone de R converge.

Démonstration. On va le prouver pour une suite croissante. Si la suite est
constante égale à −∞, elle converge. Sinon, à partir d’un certain rang, elle est
à valeurs dans ]−∞,+∞], donc on peut se ramener au cas où elle est à valeurs
] − ∞,+∞]. Maintenant, si elle contient +∞, elle est constante à partir d’un
certain rang, donc elle converge. On s’est donc finalement ramené au cas où
la suite est à valeurs réelles : si elle est croissante, majorée, elle converge dans
R, si elle est croissante non majorée, elle converge vers +∞.

1.2 Limite supérieure
La limite supérieure d’une suite (an) à valeurs dans R est

lim
n→+∞

an = lim
n→+∞

sup
k≥n

ak.

Cette limite existe bien car la suite (vn) définie par vn = sup
k≥n

ak est dé-

croissante. De même, la limite inférieure d’une suite (an) à valeurs dans R
est

lim
n→+∞

an = lim
n→+∞

inf
k≥n

ak.

Cette limite existe bien car la suite (wn) définie par wn = inf
k≥n

ak est crois-
sante.

Lemme 1. Soit (xn)n≥1 une suite à valeurs dans R, f une fonction croissante
continue de (R, d) dans (R, d). Alors, sup{f(xi); i ≥ 1} = f(sup{xi; i ≥ n}).

Démonstration. La suite max{xi; 1 ≤ i ≤ k} converge vers sup{xi; i ≥ 1}
lorsque k tend vers l’infini. Donc par continuité f(max{xi; 1 ≤ i ≤ k})
converge vers f(sup{xi; i ≥ 1}). Or f(max{xi; 1 ≤ i ≤ k}) = max{f(xi); 1 ≤
i ≤ k}, qui elle-même converge vers sup{f(xi); i ≥ 1} lorsque k tend vers
l’infini. Finalement sup{f(xi); i ≥ 1} = f(sup{xi; i ≥ n}).
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Théorème 2. lim
n→+∞

an est la plus grande valeur d’adhérence de an dans R.

Démonstration. Posons l = lim
n→+∞

an, et, comme précédemment vn = sup
k≥n

ak.

Commençons par montrer que toute valeur d’adhérence a de (an) vérifie a ≤ l.
Soit a = lim

n→+∞
aφ(n) une valeur d’adhérence. Si a = −∞ ou l = +∞, il n’y

a rien a montrer. Sinon, prenons ε > 0. Il existe N tel que n ≥ N entraîne
vn ≤ l + ε, et donc ak ≤ l + ε pour k ≥ N . Comme φ(n) tend vers l’infini, il
existe M tel que n ≥ M entraîne φ(n) ≥ N . Finalement on a aφ(n) ≤ l + ε
pour n ≥ M , d’où a ≤ l + ε. Comme ε est quelconque, on a a ≤ l. Reste à
montrer que l est valeur d’adhérence.

On pose φ(1) = 1, puis

φ(k + 1) = inf
{
n ≥ φ(k) + 1;ψ(vφ(k)+1) ≥ ψ(an) ≥ ψ(vφ(k)+1) − 1/k

}
φ(k + 1) est bien défini, car supn≥φ(k)+1 ψ(an) = ψ(supn≥φ(k)+1 an), d’après
le lemme (ψ est un homéomorphisme, donc est continu). Pour k ≥ 1, on a

ψ(vφ(k)+1) ≥ ψ(aφ(k+1)) ≥ ψ(vφ(k)+1) − 1/k,

ce qui montre que ψ(aφ(k)) tend vers ψ(l), et donc, comme ψ−1 est continue,
que aφ(k) tend vers l.

De même

Théorème 3. lim
n→+∞

an est la plus petite valeur d’adhérence de an dans R.

Théorème 4.

lim
n→+∞

an = sup{x ∈ R; {n ≥ 1; an ≥ x} est infini.}

Démonstration. Supposons que x est tel que {n ≥ 1; an ≥ x} est infini. On
peut donc en extraire une suite φ(n) strictement croissante d’entiers telle que

aφ(n) converge vers z ∈ R et aφ(n) ≥ x pour tout n : comme lim
n→+∞

an est

plus grand que toutes les valeurs d’adhérence, on a donc

lim
n→+∞

an ≥ z ≥ x

En prenant le sup sur tous les x tels que {n ≥ 1; an ≥ x} est infini, on obtient

lim
n→+∞

an ≥ sup{x ∈ R; {n ≥ 1; an ≥ x} est infini.}

Maintenant raisonnons par l’absurde et supposons que

L = lim
n→+∞

an > S = sup{x ∈ R; {n ≥ 1; an ≥ x} est infini.}

Soit ε > 0 tel que L > S+ε. Comme L est la plus grande valeur d’adhérence
de an, L est la limite d’une suite extraite aφ(n). Pour n assez grand, on a
aφ(n) > S + ε, ce qui entraîne que l’ensemble des n tels que an dépasse S + ε
est infini, ce qui contredit la définition de S.
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De même

Théorème 5.

lim
n→+∞

an = inf{x ∈ R; {n ≥ 1; an ≤ x} est infini.}

Théorème 6. Une suite (an) à valeurs dans R converge si et seulement si

lim
n→+∞

an = lim
n→+∞

an, qui est alors la limite.

Démonstration. Si lim
n→+∞

an = lim
n→+∞

an = +∞, alors pour tout x ∈ R,

{n ≥ 1; an ≤ x} est fini, ce qui montre que an tend vers +∞. De même, si

lim
n→+∞

an = lim
n→+∞

an = −∞, alors pour tout x ∈ R, {n ≥ 1; an ≥ x} est

fini, ce qui montre que an tend vers −∞. Passons au cas où lim
n→+∞

an =

lim
n→+∞

an = l ∈ R. Soit ε > 0. Comme

lim
n→+∞

an = sup{x ∈ R; {n ≥ 1; an ≥ x} est infini.} = l ∈ R,

l’ensemble des n tels que an ≥ l + ε est fini. De même, comme

lim
n→+∞

an = inf{x ∈ R; {n ≥ 1; an ≤ x} est infini.} = l ∈ R,

l’ensemble des n tels que an ≤ l−ε est fini. Finalement, l’ensemble des n tels
que |an − l| ≥ ε est fini . Ainsi, pour tout ε > 0, à partir d’un certain rang,
|an − l| < ε ce qui montrer que an tend vers l.

Réciproquement, si an converge vers l ∈ R, lim
n→+∞

an et lim
n→+∞

an sont

égales à l puisque ce sont des valeurs d’adhérence de (an).

Théorème 7. Soit (un), u′
n deux suites avec un ≤ u′

n pour tout n. On a

lim
n→+∞

un ≤ lim
n→+∞

u′
n et lim

n→+∞
un ≤ lim

n→+∞
u′

n

Démonstration. Pour tout n, sup
k≥n

uk ≤ sup
k≥n

u′
k, d’où la première inéga-

lité en faisant tendre n vers +∞. Pour tout n, inf
k≥n

uk ≤ inf
k≥n

u′
k, d’où la

deuxième inégalité en faisant tendre n vers +∞.

Corollaire 2. Soit l ∈ R. On suppose que pour tout ε > 0,

lim
n→+∞

un ≥ l − ε

et
lim

n→+∞
un ≤ l + ε.

Alors, un converge vers l.
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Démonstration. En faisant tendre ε > 0 dans les deux inégalités, on obtient

lim
n→+∞

un ≥ l

lim
n→+∞

un ≤ l.

Finalement
l ≤ lim

n→+∞
un ≤ lim

n→+∞
un ≤ l,

comme les termes extrêmes sont égaux, ceci entraîne que tous les termes sont
égaux.
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1.3 Exercices sur les limites supérieures et in-
férieures

Exercice 1. 1. On pose an = (−1)n(1 + 1
n
). Déterminer limn→+∞an et

limn→+∞an.
2. Soit f une fonction continue croissance de R dans R. Donner une

expression simple limn→+∞f(an) et limn→+∞f(an).
3. Même question lorsque (an) est remplacée par une suite dont la limite

supérieure est 1 et la limite supérieure est −1

Exercice 2. Soit (ai, i ∈ I) une famille non vide d’éléments de R.
1. Démontrer que inf (ai, i ∈ I) = − sup (−ai, i ∈ I).
2. Soit α un élément de R. Démontrer que

inf (α + ai, i ∈ I) = α + inf (ai, i ∈ I)

et en déduire que

sup (α + ai, i ∈ I) = α + sup (ai, i ∈ I).

Exercice 3. Démontrer que lim
n→+∞

an = − lim
n→+∞

(−an), pour toute suite

(an)n≥1 d’éléments de R.

Exercice 4. Soit (an)n≥1 et (bn)n≥1 deux suites dans R.
1. Démontrer que

lim
n→+∞

(an + bn) ≥ lim
n→+∞

an + lim
n→+∞

bn.

et
lim

n→+∞
(an + bn) ≤ lim

n→+∞
an + lim

n→+∞
bn.

Montrer que les inégalités peuvent être strictes.
2. On suppose que (an)n≥1 converge dans R. Démontrer que

lim
n→+∞

(an+bn)= lim
n→+∞

an+ lim
n→+∞

bn; lim
n→+∞

(an−bn)= lim
n→+∞

an− lim
n→+∞

bn

lim
n→+∞

(an+bn)= lim
n→+∞

an+ lim
n→+∞

bn; lim
n→+∞

(an−bn)= lim
n→+∞

an− lim
n→+∞

bn

Exercice 5. Suites sous-additives (lemme de Fekete)

1. Soit k un entier naturel non nul fixé, r un entier entre 0 et k − 1.
Montrer que

ukn+r

nk + r
≤ nuk

nk + r
+ ur

nk + r
.

En déduire lim
n→+∞

ukn+r

nk+r
≤ uk

k
.
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2. Montrer que lim
n→+∞

un

n
≤ infk≥1

uk

k
.

3. Conclure.

4. Application 1. Pour A ∈ Mn(R), on pose |∥A|∥ = sup
y∈Rn\{0}

∥Ay∥∞
∥y∥∞

.

Montrer que la suite |∥An|∥1/n converge vers un réel positif.
5. Application 2. Soit E une partie finie de Rd. On note An l’ensemble

des suites (u1, . . . un) qui vérifient
— u1 ∈ E
— ui+1 − ui ∈ E pour tout i ∈ {1, . . . , n− 1}
— i 7→ ui est injective
Montrer que la suite |An|1/n converge vers un réel positif.

Exercice 6. Soit (an)n≥1 et (bn)n≥1 deux suites de réels telles que, pour tout

n ≥ 1, an > 0, bn > 0 et lim
n→+∞

(an)n = a > 0, lim
n→+∞

(bn)n = b > 0. Soient

p, q > 0 avec p+ q = 1. Déterminer lim
n→+∞

(pan + qbn)n.

Exercice 7. Soit α > 1. Montrer qu’il existe une unique suite (uk)k≥1 véri-
fiant pour tout N

1 =
N∑

i=1

(
N∑

k=i

uk

)−α

.

Montrer que lim
n→+∞

un ≤ ζ(α)1/α ≤ lim
n→+∞

un. Montrer que (un)n≥1 converge

vers une limite que l’on déterminera (cette dernière question est plutôt un
défi, l’auteur de ces lignes ne connaît pas la réponse).

Exercice 8. 1. Pour n ≥ 1, on pose Hn = ∑n
k=1

1
k
. Par la méthode de

votre choix, montrer que Hn ∼ log n.
2. Soit f une fonction continue sur [0, 1].

Pour n ≥ 1, on pose Sn = ∑n
k=1

1
k
f( k

n
). Après avoir justifié l’existence

d’un α > 0 tel que |f(0) − f(k/n)| ≤ ε pour 0 ≤ k ≤ αn, montrer que

lim
n→+∞

|Sn − f(0)Hn|
Hn

≤ ε.

Conclure.

3. Donner un équivalent de
n∑

k=1

1
sin k

n

lorsque n tend vers l’infini.
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Chapitre 2

Un peu de théorie de la mesure

La théorie des probabilités décrit les événements comme des sous-ensembles
d’un ensemble Ω représentant tous les résultats possibles a priori – même s’il
peut s’avérer ensuite que certains n’arrivent jamais. Remarquons bien qu’il
n’est pas possible de modéliser un phénomène aléatoire quelconque si l’on ne
connaît pas les résultats possibles a priori.

Soit donc Ω un ensemble. Pour tout A ⊂ Ω, on note Ac le complémentaire
de A dans Ω :

Ac = {x ∈ Ω;x /∈ A}.

2.1 Tribus

2.1.1 Axiomes de base
On dit qu’une partie F ⊂ P(Ω) est une tribu si elle vérifie les propriétés

suivantes :
1. ∅ ∈ F .
2. ∀A ∈ F Ac ∈ F .

3. Pour toute suite (Ai)i∈N d’éléments de F ,
+∞
∪

i=1
Ai ∈ F .

2.1.2 Propriétés
Les propositions suivantes sont alors des conséquences relativement faciles

des axiomes de base :
— Ω ∈ A.
— Pour toute suite (Ai)i∈N d’éléments de A,

+∞
∩

i=1
Ai ∈ A.

— Pour toute suite (Ai)1≤i≤n d’éléments de A,
n
∪

i=1
Ai ∈ A.

— Pour toute suite (Ai)1≤i≤n d’éléments de A,
n
∩

i=1
Ai ∈ A.

Une fois que Ω et A sont fixés, on appelle événement tout élément de A.
Exercice :
Montrer qu’une partie A ⊂ P(Ω) est une tribu si elle vérifie les propriétés

suivantes :
1. Ω ∈ A.

11
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2. ∀(A,B) ∈ A × A (A ⊂ B) =⇒ (B\A ∈ A).

3. ∀(A,B) ∈ A2 A ∪B ∈ A.

4. Pour toute suite (Ai)i∈N d’éléments de A deux à deux disjoints,
+∞
∪

i=1
Ai ∈

A.

2.1.3 Sous-tribus
Si A est une tribu et que la partie B ⊂ A est une tribu, alors on dit que

B est une sous-tribu de A. 1

2.1.4 Opérations sur les tribus
Intersection de tribus

Soit Ω un ensemble et T un ensemble de tribus sur Ω. T est supposé non
vide. 2 Il peut être fini ou infini, voire même infini non dénombrable. Alors
A = ∩

A∈T
A est une tribu.

Démonstration. Il suffit de vérifier les 3 axiomes de base des tribus.
— ∀A ∈ T ∅ ∈ A. Donc ∅ ∈ ∩

A∈T
A = A.

— Soit A ∈ A. On doit montrer que Ac ∈ A. Soit A ∈ T . Comme les
A ∈ A et que A est une tribu, Ac ∈ A. Comme ceci est vrai pour tout
A ∈ T , on a Ac ∈ ∩

A∈T
A = A.

— Soit (Ai)i∈I une famille dénombrable d’éléments de A. On doit montrer
que ∪

i∈I
Ai ∈ A. Soit A ∈ T . Comme les Ai sont dans A et que A est

une tribu, ∪
i∈I

Ai ∈ A. Comme ceci est vrai pour tout A ∈ T , on a

∪
i∈I

Ai ∈ ∩
A∈T

A = A.

Tribu engendrée par une famille de tribus

Soit (Ai)i∈I une famille de tribus sur Ω. L’ensemble des tribus contenant
des tribus contenant toutes les Ai est non vide, puisque P(Ω) est une telle
tribu. D’après le résultat énoncé ci-dessus, l’intersection de toutes ces tribus
est une tribu. Par construction, cette tribu est la plus petite tribu contenant
toutes les Ai. On la note

∧
i∈I

Ai.

1. Une erreur classique à ne pas commettre : si B est une sous-tribu de A, que B ⊂ A
avec A ∈ A, alors rien ne permet d’affirmer que B ∈ B ni que B ∈ A.

2. T est donc un ensemble d’ensembles d’ensembles, lol.
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Tribu engendrée par une famille d’ensembles

Soit (Ai)i∈I une famille de parties de Ω.
Pour tout i, la plus petite tribu contenantAi est la tribu Ai = (∅, Ai, A

c
i ,Ω).

Ainsi, la plus petite tribu contenant les ensembles Ai est

σ(Ai; i ∈ I).

On note cette tribu σ(Ai; i ∈ I).

2.1.5 Tribu borélienne, fonctions mesurables
Soit (A,A) et (B,B) deux espaces mesurés. On dit qu’une application f

de A dans B est mesurable de (A,A) dans (B,B) si quelque soit X ∈ B, son
image réciproque f−1(X) est dans A.

Commençons par une remarque simple : si f de A dans B est (A,A) −
(B,B) mesurable et que g de B dans C est (B,B) − (C, C) mesurable, alors
g ◦ f est (A,A) − (C, C) mesurable.

Théorème 8 (Théorème fondamental de la mesurabilité). Soit f une appli-
cation quelconque d’un ensemble Ω dans un ensemble Ω′. Alors

— Pour toute tribu T sur Ω′, f−1(T ) est une tribu sur Ω.
— Pour tout A ∈ P(P(Ω′)), σ(f−1(A)) = f−1(σ(A))

Démonstration. — Vérifions que f−1(T ) vérifie les axiomes des tribus
— ∅ ∈ f−1(T ) car ∅ = f−1(∅) et ∅ ∈ T
— Soit A ∈ f−1(T ) : il existe B ∈ T avec A = f−1(B). Ac =

(f−1(B))c = f−1(Bc) ; or Bc ∈ T donc Ac ∈ f−1(T )
— Soient (Ai)i≥1 des éléments de f−1(T ) : pour tout i, il existe Bi ∈ T

avec Ai = f−1(Bi). ∪iAi = ∪i(f−1(Bi)) = f−1(∪iBi) ; or ∪iBi ∈ T
donc ∪iAi ∈ f−1(T )

— A ⊂ σ(A), donc f−1(A) ⊂ f−1(σ(A)), puis

σ(f−1(A)) ⊂ σ(f−1(σ(A))) = f−1(σ(A)),

où l’égalité provient de la première partie du théorème. Il reste à
montrer que f−1(σ(A)) ⊂ σ(f−1(A)). Notons

C = {X ∈ σ(A); f−1(X) ∈ σ(f−1(A))}.

Il n’est pas difficile de démontrer que C est une tribu (laissé en exer-
cice). Mais C contient A, donc C est égal à σ(A) tout entier, ce qui
montre l’inclusion voulue.

Si il n’y a pas d’ambiguité sur la tribu B de l’espace d’arrivée, on note
σ(f) la tribu f−1(B) ; c’est la plus petite tribu A sur A telle que f soit
une application mesurable de (A,A) dans (B,B). On dit que c’est la tribu
engendrée par l’application f .

Corollaire 3. Soit (A,A) et (B,B) deux espaces mesurés. On suppose que
B = σ(C). Une application f de A dans B est mesurable de (A,A) dans
(B,B) si quel que soit X ∈ C, son image réciproque f−1(X) est dans A.
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Si A est un ensemble muni d’une topologie, on appelle tribu borélienne
de A et l’on note B(A) la tribu engendrée par les ouverts de A.

Lorsque l’ensemble d’arrivée d’une fonction est (R,B(R)), on parle fré-
quemment d’application mesurable sans préciser l’espace d’arrivée.

Théorème 9. La tribu borélienne de Rd est également la tribu engendrée
par les pavés ouverts de Rd dont les côtés ont des extrémités rationnelles ; les
ensembles de la forme ∏d

i=1]ai, bi[, avec ai < bi et ai, bi dans Q.

Démonstration. Soit T la tribu engendrée par ces pavés : T ⊂ B(Rd) car ces
pavés sont eux-mêmes des ouverts de Rd. Pour obtenir l’inclusion réciproque,
il suffit de montrer que chaque ouvert O de Rd est dans T . Soit donc O
un ouvert de Rd. Soit x ∈ Rd : il existe ε > 0 tel que x+] − ε,+ε[d⊂ O.
Comme Q est dense dans R, on peut trouver des rationnels ai(x) et bi(x) avec
xi − ε < ai(x) < xi < bi(x) < xi + ε. Posons alors U(x) = ∏d

i=1]ai(x), bi(x)[.
On a

O = ∪
x∈O

U(x)

On peut définir une relation d’équivalence sur O par u ∼ v si et seulement
si U(u) = U(v). Evidemment, l’application U passe au quotient, et l’on peut
écrire

O = ∪
x∈O\∼

U(x)

Mais O\ ∼ est au plus dénombrable car U est à valeur dans Q2d qui est
dénombrable. Ainsi, O est réunion dénombrable d’éléments de T , donc O est
dans T .

On peut en déduire aisément que la tribu borélienne de R est engendrée
par les ensembles de la forme ] − ∞, a[, où a décrit R. Ce résultat pourra
éventuellement être traité en exercice.

Corollaire 4. Soit (A,A) un espace mesuré, f une application de A dans R.
Si pour tout a ∈ R, l’ensemble f−1(]−∞, a[) est dans A, alors f est mesurable
de (A,A) dans (R,B(R)).

Corollaire 5. Soit A et B deux espaces topologiques. Toute application conti-
nue de (A,B(A)) dans (B,B(B)) est mesurable de (A,B(A)) dans (B,B(B)).

On note couramment V(A,A) l’ensemble des applications mesurables de
(A,A) dans (R,B(R)). De même, on note V(A,A) l’ensemble des applications
mesurables de (A,A) dans (R,B(R)) et V+(A,A) l’ensemble des applications
mesurables de (A,A) dans (R+,B(R+))

Tribu produit

Soit (Ω,A) et (Ω′,A′) deux espaces mesurés. On appelle tribu produit sur
Ω × Ω′ la tribu engendrée par les ensembles A×B ∈ A × B. On note A ⊗ B
cette tribu.

Commençons par une remarque simple : si π1 est l’application de Ω × Ω′

dans Ω qui à (x, y) ∈ Ω × Ω′ associe π1(x, y) = x, alors π1 (la projection
sur la première coordonnée) est une application (Ω × Ω′,A ⊗ B) − (Ω,A)



2.1. TRIBUS 15

mesurable. En effet, si A ∈ A, π−1
1 (A) = A × Ω′ ∈ A × B ⊂ A ⊗ B. De

même, si π2 est l’application de Ω × Ω′ dans Ω′ qui à (x, y) ∈ Ω × Ω′ associe
π2(x, y) = y, alors π2 (la projection sur la deuxième coordonnée) est une
application (Ω × Ω′,A ⊗ B) − (Ω′,B) mesurable.

Théorème 10. On suppose que A = σ((Ai)i∈I) et B = σ((Bi)j∈J). On
suppose en outre qu’il existe I ′ et J ′ dénombrables avec I ′ ⊂ I, J ′ ⊂ J et tels
que Ω = ∪

i∈I′
Ai et Ω′ = ∪

j∈J ′
Bj. Alors A ⊗ B = σ((Ai ×Bj)(i,j)∈I×J).

Démonstration. Notons O la tribu engendrée par les (Ai ×Bj)(i,j)∈I×J . Pour
A ⊂ Ω, on note CA = {B ∈ B : A× B ∈ O}. Montrons que pour tout i ∈ I,
CAi

= B. Comme CAi
contient les Bj qui engendrent B, il suffit de voir que

CAi
est une tribu. On a Ai × ∅ = ∅ ∈ O. De même, il est facile de voir que

CAi
est stable par réunion dénombrable (laissé au lecteur). On en déduit que

Ω′ = ∪j∈J ′Bj ∈ CAi
. Pour B ∈ CAi

, on a Ai×(Ω′\B) = (Ai×Ω′)\(A×B) ∈ O,
d’où Bc ∈ CAi

. CAi
est donc bien une sous-tribu de B : elle contient les Bj

qui engendrent B : c’est B. Notons D = {A ∈ A : CA = B}. En procédant
comme précédemment, le lecteur montre (laissé en exercice) que D est une
sous-tribu de A. Mais D contient les Ai. Comme les Ai engendrent A, on a
D = A, ce qui signifie que pour tout (A,B) ∈ A × B, on a A × B ∈ O. En
considérant les tribus engendrées, on a A ⊗ B ⊂ O. L’inclusion réciproque
est évidente.

Théorème 11. Soient f une application de C dans Ω, g une application
de C dans Ω′.On définit une application F de C dans Ω × Ω′ par F (x) =
(f(x), g(x)). L’application F est (C, C) − (Ω × Ω′,A ⊗ B) mesurable si et
seulement si f est (C, C) − (Ω,A) mesurable et g (C, C) − (Ω′,B) mesurable.

Démonstration. La condition est nécessaire car f = π1◦F et g = π2◦F : ainsi
lorsque F est (C, C) − (Ω × Ω′,A ⊗ B) mesurable, comme π2 est (Ω × Ω′,A ⊗
B) − (Ω,A) mesurable, f est mesurable comme composée d’applications me-
surables. Pour les mêmes raisons, g est mesurable. Supposons maintenant que
f est (C, C)− (Ω,A) mesurable et g (C, C)− (Ω′,B) mesurable et intéressons-
nous à F . Soit A×B ∈ A × B : F−1(A×B) = f−1(A) ∩ g−1(B). Comme f
est g sont mesurables, f−1(A) et g−1(B) sont dans C, donc leur intersection
aussi. Ainsi pour tout A×B ∈ A × B, F−1(A×B) ∈ C. Mais les ensembles
A×B ∈ A × B engendrent A ⊗ B, donc F est bien (C, C) − (Ω × Ω′,A ⊗ B)
mesurable.

Théorème 12. Soit (Ω1,F1), (Ω2,F2), (Ω3,F3) trois espaces mesurés. L’ap-
plication Ψ : ((Ω1 × Ω2) × Ω3) → Ω1 × (Ω2 × Ω3) qui à ((x, y), z) asso-
cie (x, (y, z) est bi-mesurable de ((Ω1 × Ω2) × Ω3), (F1 ⊗ F2) ⊗ F3) vers
(Ω1 × (Ω2 × Ω3),F1 ⊗ (F2 ⊗ F3)). Ainsi les deux tribus (F1 ⊗ F2) ⊗ F3
et F1 ⊗ (F2 ⊗ F3) peuvent s’identifier et on notera simplement F1 ⊗ F2 ⊗ F3
cette tribu sur Ω1 × Ω2 × Ω3.

Démonstration. En utilisant le théorème 10, on voit que les ensembles (A1 ×
A2) ×A3 et A1 × (A2 ×A3) engendrent respectivement les deux tribus consi-
dérées. Le corollaire 3 permet alors de conclure.

L’extension au produit d’un nombre quelconque d’espaces mesurés se fait
alors aisément par récurrence.
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Théorème 13. Pour tout entier d ≥ 2, on a

B(Rd) = B(R)⊗d

Démonstration. Il suffit de montrer que pour tout d ≥ 1, B(Rd+1) = B(Rd)⊗
B(R), puis de conclure par récurrence. Or, d’après le théorème 9 la tribu
B(Rd) est la tribu engendrée par les ensembles A de la forme ∏d

i=1]ai, bi[,
avec ai < bi et ai, bi dans Q, tandis que B(R) est la tribu engendrée par les
ensembles B de la forme ]ad+1, bd+1[, avec ad+1 < bd+1 et ad+1, bd+1 dans Q.
D’après le théorème 10, les produits A×B engendrent la tribu B(Rd)⊗B(R) ;
mais ces ensembles sont exactement les ensembles de la forme ∏d+1

i=1 ]ai, bi[,
avec ai < bi et ai, bi dans Q, qui, toujours d’après le théorème 9 engendrent
la tribu B(Rd+1).

Théorème 14. Soit f, g deux applications mesurables de (C, C) dans (R,B(R))
et G une application mesurable de (R2,B(R2)) dans (R,B(R)). Alors H dé-
finie par H(x) = G(f(x), g(x)) est mesurable de (C, C) dans (R,B(R)).
En particulier les choix G(x, y) = x+y et G(x, y) = xy nous disent que f+g
et fg sont mesurables de (C, C) dans (R,B(R)).

Démonstration. Avec les notations du Théorème 11, H = G ◦ F . Pour le cas
particulier, notons que comme H est une application continue de R2 dans R,
c’est une application (R2,B(R2))− (R,B(R)) mesurable, ou de manière équi-
valente (R2,B(R) ⊗ B(R)) − (R,B(R)) mesurable les applications continues
sont mesurables par rapport aux tribus boréliennes associées aux topologies
correspondantes.

2.2 Mesures

2.2.1 Algèbres
On dit qu’une partie A ⊂ P(Ω) est une algèbre si elle vérifie les propriétés

suivantes :

1. ∅ ∈ A.

2. ∀A ∈ A Ac ∈ A.

3. Pour tous A et B dans A, A ∪B ∈ A

Remarque : il n’est pas difficile de démontrer qu’une algèbre est stable
par union finie ou intersection finie.

On voit tout de suite que la différence avec la définition d’une tribu est
que la stabilité par réunion dénombrable n’est pas requise. En fait, les tribus
sont parfois appelés σ-algèbres, la lettre σ étant traditionnellement attachée
aux propriétés liées à des familles dénombrables.

Remarque : en anglais
— algèbre se dit “field”, plus rarement algebra
— tribu (σ-algèbre) se dit “σ-field”.
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2.2.2 Espace mesuré
Soit A une algèbre. On appelle mesure sur (Ω,A) toute application

µ : A → [0,+∞]

vérifiant les propriétés suivantes :
1. µ(∅) = 0.
2. Pour toute suite (Ai)i∈N d’éléments de A deux à deux disjoints et telle

que
+∞
∪

i=1
Ai ∈ A, alors ,

µ(
+∞
∪

i=1
Ai) =

+∞∑
i=1

µ(Ai).

Dans le cas où A est une tribu, le triplet (Ω,A, µ) est appelé espace
mesuré.

Étant donné un espace mesuré (Ω,F), on dira qu’une propriété P(x) est
vraie µ-presque partout ou encore pour µ-presque tout x si il existe A ∈ F
tel que

∀x ∈ Ω\A; P(x)

et µ(A) = 0.
Pour A et B dans F , on dira parfois que A et B sont égaux µ presque

partout pour signifier que µ(A∆B) = 0.
Si µ(Ω) < +∞, on dit µ est une mesure finie. Si il existe une suite An

d’éléments de A avec µ(An) < +∞ pour tout n et que Ω =
+∞
∪

i=1
Ai, on dit

que µ est σ-finie.
Les propositions suivantes sont alors des conséquences relativement faciles

des définitions :
1. Pour toute suite (Ai)1≤i≤n d’éléments de A deux à deux disjoints,

µ(
n
∪

i=1
Ai) =

n∑
i=1

µ(Ai).

2. ∀A,B ∈ A (A ∩B = ∅) =⇒ (µ(A ∪B) = µ(A) + µ(B))
3. ∀(A,E) ∈ A2 avec A ⊂ E et µ(A) < +∞ on a µ(E\A) = µ(E) −
µ(A)

4. ∀A,B ∈ A µ(A∩B) < +∞ =⇒ µ(A∪B) = µ(A)+µ(B)−µ(A∩B)
5. ∀A,B ∈ A µ(A ∪B) ≤ µ(A) + µ(B)
6. ∀A,B ∈ A (A ⊂ B) =⇒ (µ(A) ≤ µ(B))
7. ∀A,B ∈ A µ(A ∩B) ≤ min(µ(A), µ(B))
8. ∀A,B ∈ A µ(A ∪B) ≥ max(µ(A), µ(B))

9. Pour toute suite (Ai)i≥1 d’éléments de A telle que
+∞
∪

i=1
Ai ∈ A,

µ(
+∞
∪

i=1
Ai) ≤

+∞∑
i=1

µ(Ai).

10. Si (Ai)i∈N est une suite croissante d’événements de A (c’est à dire
que ∀n ∈ N An ⊂ An+1)) telle que A =

+∞
∪

i=1
Ai ∈ A, alors la suite

(µ(An))n∈N est monotone, croissante, et converge vers µ(A).
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11. Si (Ai)i∈N est une suite décroissante d’événements (c’est à dire que
∀n ∈ N An+1 ⊂ An)) , avec µ(A1) < +∞ et que A =

+∞
∩

i=1
Ai ∈ A,

alors la suite (µ(An))n∈N est monotone, décroissante, et converge vers
µ(A).

Démonstration. 1. Il suffit de poser Ai = ∅ pour i ≥ n+1 et d’appliquer
l’axiome 2.

2. Il suffit d’appliquer la propriété 1 avec n = 2, A1 = A et A2 = B.
3. Il suffit d’appliquer la propriété 2 avec B = E\A : A et B sont disjoints

donc µ(A) + µ(Ac) = µ(A ∪ Ac) = µ(E) .
4. Les ensembles A\B, B\A et A ∩ B sont disjoints et leur réunion est
A ∪B, donc l’après la propriété 1, on a

µ(A ∪B) = µ(A\B) + µ(B\A) + µ(A ∩B)
µ(A ∪B) = (µ(A\B) + µ(A ∩B) + (µ(B\A) + µ(A ∩B)) − µ(A ∩B)

= µ(A) + µ(B) − µ(A ∩B)

car A\B A∩B sont disjoints, de réunion A, tandis que B\A et A∩B
sont disjoints, de réunion B.

5. Il suffit d’appliquer la relation 4 en remarquant que µ(A ∩B) ≥ 0
6. Si A ⊂ B, on a B est la réunion disjointe de A et de B\A. Donc
µ(B) = µ(A) + µ(B\A) ≥ µ(A).

7. (A∩B) ⊂ A, donc d’après la propriété 6 µ(A∩B) ≤ µ(A). De même
µ(A ∩B) ≤ µ(B). Finalement µ(A ∩B) ≤ min(µ(A), µ(B)).

8. A ⊂ (A∪B), donc d’après la propriété 6 µ(A) ≤ µ(A∪B). De même
µ(B) ≤ µ(A ∪B). Finalement max(µ(A), µ(B)) ≤ µ(A ∪B).

9. Posons B1 = A1 et, pour tout n ≥ 2 Bn = An\(
n−1
∪

i=1
Bi). Par construc-

tion, les (Bk)k≥1 sont deux à deux disjoints. De plus, on peut montrer
par récurrence sur n que

∀n ≥ 1
n
∪

i=1
Ai =

n
∪

i=1
Bi.

On en déduit
+∞
∪

i=1
Ai =

+∞
∪

i=1
Bi.

Donc

µ(
+∞
∪

i=1
Ai) = µ(

+∞
∪

i=1
Bi)

=
+∞∑
i=1

µ(Bi)

≤
+∞∑
i=1

µ(Ai).
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10. Comme An ⊂ An+1, on a µ(An) ≤ µ(An+1), donc la suite est crois-
sante. Comme on a pour tout n : An ⊂ A, la suite (µ(An))n≥1 est ma-
jorée par µ(A). Posons B1 = A1 et, pour tout n ≥ 2 Bn = An\An−1.
On a :

∀n ≥ 1 An =
n
∪

i=1
Bi

et
A =

+∞
∪

i=1
Ai =

+∞
∪

i=1
Bi

Ainsi,

µ(A) = µ(
+∞
∪

i=1
Bi)

=
+∞∑
i=1

µ(Bi)

= lim
n→+∞

n∑
i=1

µ(Bi)

= lim
n→+∞

µ(
n
∪

i=1
Bi)

= lim
n→+∞

µ(An)

11. On applique le résultat précédent à la suite croissante (A′
n)n≥1 définie

par A′
n = A1\An.

2.2.3 Masse de Dirac
Soit (Ω,F) un espace et une tribu. Soit x ∈ Ω. On appelle mesure de

Dirac en x et on note δx la mesure définie par

∀A ∈ F δx(A) = 11A(x).

Vérifions brièvement que δx est une mesure : il est évident que δx est à valeurs
dans [0,+∞]. Maintenant, soit (An)n≥1 une famille d’éléments de F deux à
deux disjoints. Si x n’est dans aucun des Ai, il n’est pas dans leur réunion,
et donc on a

δx(∪i≥1Ai) = 0 =
∑
i≥1

δx(Ai).

Si x est dans un des Ai, il est dans un unique Ai, puisque les Ai sont deux à
deux disjoints ; ainsi ∑

i≥1
δx(Ai) = 1 = δx(∪i≥1Ai).

2.2.4 Mesure de comptage
Soit (Ω,F) un espace et une tribu. On appelle mesure de comptage sur

Ω la mesure C définie par
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∀A ∈ F C(A) = |A|,

où |A| est le cardinal de A (le nombre d’éléments de A si A est fini, +∞
sinon). Vérifions brièvement que C est une mesure : il est évident que C est à
valeurs dans [0,+∞]. Maintenant, soit (An)n≥1 une famille d’éléments de F
deux à deux disjoints. Si un des Ai est infini, il est évident que ∑i≥1 C(Ai) =
+∞ = C(∪i≥1Ai). De même si il y a une infinité de Ai non vides ∪i≥1Ai est
infini et la somme ∑i≥1 C(Ai) a une infinité de termes qui dépasse 1 donc
encore une fois ∑i≥1 C(Ai) = +∞ = C(∪i≥1Ai). Reste le cas où aucun des
Ai n’est infini et où seul un nombre fini est non-vide : c’est donc une réunion
finie d’ensemble finis et alors la formule recherchée est bien connue.

2.2.5 Opération simples
La somme de deux mesures est une mesure ; en multipliant une mesure

par une constante positive, on a encore une mesure.
La preuve est simple et est laissée en exercice.

2.2.6 Extension d’une mesure – mesure de Lebesgue
On va présenter maintenant un théorème abstrait qui sera peu employé

dans ce cours, mais est important pour fonder les bases de la théorie de
l’intégration de Lebesgue.

Théorème 15 (Théorème de prolongement de Hahn). Étant donnée une
algèbre F de parties d’un ensemble Ω et une mesure µ sur F , la fonction
d’ensemble µ̄ définie sur la tribu σ(F) de parties de Ω engendrée par F par

µ̄(A) = inf({
∞∑

n=1
µ(An); (An)n≥1 ∈ FN∗ et A ⊂

∞
∪

n=1
An})

est une mesure sur σ(F) qui prolonge µ. Ce prolongement est unique si µ est
une mesure est σ-finie.

La preuve de ce théorème est basée sur le concept de mesure extérieure,
développé notamment par Carathéodory.

Ce théorème difficile est admis.
Le théorème suivant ne sera pas utilisé dans ce cours, mais mérite d’être

mentionné car il est très pratique dans certains problèmes théoriques que le
lecteur pourra rencontrer dans le futur.

Théorème 16. Si µ est une mesure finie sur F et A une algèbre engendrant
F , alors pour tout A ∈ F et tout ε > 0, il existe A′ ∈ A tel que µ(A∆A′) ≤ ε.

Démonstration. Il suffit de montrer que l’ensemble T des A ∈ F tels que
pour tout ε > 0, il existe A′ ∈ A tel que µ(A∆A′) ≤ ε, est une tribu. Comme
A∆A′ = Ac∆A′c, la stabilité par passage au complémentaire est évidente.
Soit (An)n≥1 une suite d’éléments de T . On pose A = ∪n≥1An et on se donne
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ε > 0. Pour tout n, soit A′
n ∈ A tel que µ(An∆A′

n) ≤ ε
2n+1 . Soit n tel que

µ(A\
n
∪

k=1
Ak) ≤ ε/2. On a

µ(A∆
n
∪

k=1
A′

k) ≤ µ(A∆
n
∪

k=1
Ak)+µ(

n
∪

k=1
A′

k∆
n
∪

k=1
Ak) ≤ ε/2+

n∑
k=1

ε

2k+1 ≤ ε.

Passons au théorème d’existence de la mesure de Lebesgue.

Théorème 17. Il existe une unique mesure λ sur (R,B(R)) telle que quels
que soient les réels a et b avec a < b, on ait

— λ(] − ∞, a]) = λ(] − ∞, a[) = λ([b,+∞[) = λ(]b,+∞[) = +∞
— λ(]a, b]) = λ(]a, b[) = λ([a, b]) = λ([a, b[) = b− a.
— λ({a}) = 0.

Cette mesure est appelée mesure de Lebesgue sur R.

Démonstration. Idée de preuve : on définit λ pour les réunions dénombrables
d’intervalles (bornés ou pas), puis on applique le théorème de prolongement
de Hahn.

Notons que comme un ensemble dénombrable est réunion dénombrable
de singletons, tout ensemble dénombrable est de mesure de Lebesgue nulle.
Par exemple, l’ensemble des rationnels est de mesure nulle.

2.2.7 Mesure image
Soit (Ω,F , µ) un espace mesuré, f une application de Ω dans Ω′. On pose

σ̃(F , f) = {A ∈ P(Ω′); f−1(A) ∈ F}.

On appelle mesure image de µ par f et on note µf la mesure définie sur
σ̃(F , f) par

µf (A) = µ(f−1(A)).

Si f est une application qui est mesurable comme application de (Ω,F) dans
(Ω′,G), µf est évidemment définie sur G, puisque G est une sous-tribu de
σ̃(F , f).

2.3 Convergence et mesurabilité

2.3.1 Tribu borélienne de R
Rappelons brièvement quelques notions de base de la topologie de R. On

a R = R∪ {+∞} ∪ {−∞}. On définit φ sur [−π/2, π/2], par φ(x) = tan x si
x ∈] − π/2, π/2[,

On définit une métrique sur R par d(x, y) = |φ−1(x)−φ−1(y)|. Une boule
ouverte pour d n’est rien d’autre que l’image par φ d’une boule ouverte de
[−π/2, π/2], ainsi la tribu borélienne sur R n’est autre que la tribu image
de la tribu borélienne de [−π/2, π/2] par l’application φ. En particulier, il
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s’ensuit que la tribu borélienne de R est engendrée par les ensembles de la
forme ]x,+∞]. D’autre part, les boréliens de R ainsi que les singletons {+∞}
et {−∞} sont dans la tribu borélienne de R.

2.3.2 Importance de la séparabilité de R
R est un espace séparable, c’est à dire qu’il possède (au moins) une partie

dénombrable dense : en effet, on sait bien que l’ensemble Q des rationnels
est dense dans R Cette propriété est très souvent utilisée en théorie de la
mesure, par exemple dans le résultat suivant, qui met en oeuvre une technique
classique à connaître.

Théorème 18. Soit f, g deux applications mesurables de (Ω,F) dans (R,B(R)).
Alors

{f > g} = {ω ∈ Ω; f(ω) > g(ω)} ∈ F .

Démonstration.

{f > g} = ∪
q∈Q

{f > q > g}

= ∪
q∈Q

{f > q} ∩ {q > g}

= ∪
q∈Q

f−1(]q,+∞]) ∩ g−1([−∞, q[)

Comme f est mesurable de (Ω,F) dans (R,B(R)) et que ]q,+∞] ∈ B(R),
f−1(]q,+∞]) ∈ F . De même g−1([−∞, q]) ∈ F , leur intersection est encore
dans F , et une union dénombrable d’éléments de F est dans F , ce qui donne
le résultat voulu.

2.3.3 Convergence et mesurabilité
Théorème 19. Soit (fn)n≥1 une suite d’applications mesurables de (Ω,F)
dans (R,B(R)). Alors les applications suivantes et les événements suivants
sont mesurables :

1. sup
n≥1

fn

2. inf
n≥1

fn

3. lim
n→+∞

fn

4. lim
n→+∞

fn

5. {fn converge vers + ∞}
6. {fn converge vers − ∞}
7. {fn converge dans R}
8. {fn converge dans R}
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Démonstration. 1. Posons f = sup
n≥1

fn. On a

f−1(]x,+∞]) = ∪
n≥1

f−1
n (]x,+∞]),

ou, en adoptant le formalisme probabiliste :

{f > x} = ∪
n≥1

{fn > x}.

2. On peut simplement remarquer que inf
n≥1

fn = − sup
n≥1

(−fn), et appli-
quer le point précédent, sachant que l’opposé d’une fonction mesurable
est mesurable (par exemple car −f = (x 7→ −x) ◦ f .

3. lim
n→+∞

fn = inf
n≥1

gn, avec gn = sup
k≥n

fk. La mesurabilité des (gn)

provient du point 1 ; on applique alors le point 2.

4. Preuve analogue, ou lim
n→+∞

fn = − lim
n→+∞

(−fn)

5. {fn converge vers + ∞} est l’image réciproque de {+∞} par l’appli-

cation mesurable lim
n→+∞

fn.

6. {fn converge vers − ∞} est l’image réciproque de {−∞} par l’appli-

cation mesurable lim
n→+∞

fn.

7. On a vu dans les points 3. et 4. que les fonctions lim
n→+∞

fn et lim
n→+∞

fn

étaient (Ω,F) − (R,B(R)) mesurables.

Or {fn converge dans R} est le complémentaire de { lim
n→+∞

fn < lim
n→+∞

fn}

qui est dans F d’après le paragraphe sur la séparabilité.
8. C’est une conséquence immédiate des trois points précédents.
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2.4 Exercices de théorie de la mesure
Exercice 9. Soit Ω = {1, 2, 3, 4, 5, 6}. Pour x ∈ Ω, on pose f(x) = 11{x>3} et
g(x) = 11{3|X}. Décrire σ(f), σ(g), puis σ(f, g).

Exercice 10. En vous inspirant de l’exercice précédent, montrer que la tribu
engendrée par une fonction d’un ensemble E vers un ensemble fini F est
en bijection avec la tribu de toutes les parties d’un (éventuellement autre)
ensemble fini.

Exercice 11. 1. Soient f et g deux applications quelconques de Ω dans
R qui vérifient

∀x ∈ R {f < x} = {g < x}.

Montrer que f = g sur Ω. Que peut-on dire si la condition ci-dessus
n’est vérifiée que pour tout x rationnel ?

2. On suppose maintenant que f et g sont mesurables de l’espace mesuré
(Ω,F) dans (R,B(R)). Montrer que si pour tout x réel {f < x} =
{g < x} µ-presque partout, alors f = g µ-presque partout.

Exercice 12. On pose

µn =
2n∑

k=1

1
k
δk.

Dites brièvement pourquoi µn est une mesure et calculer µ5([0, π]). Étudier
le comportement asymptotique de µn([n,+∞[).

Exercice 13. Soit a un réel et τa : R → R la translation définie par τa(x) =
x + a. Montrer que la famille Aa = {A ∈ P(R); τa(A) = A} des parties
invariantes par τa est une tribu sur R.
Plus généralement, si f est une application de R dans R, donner une condition
suffisante sur f pour que la famille A = {A ∈ P(R); f(A) = A} soit une
tribu.

Exercice 14. Soient A et B deux tribus sur un ensemble Ω. Montrer que la
tribu engendrée par A et B coïncide avec la tribu engendrée par les ensembles
de la forme A ∩B, où (A,B) décrit A × B.

Exercice 15. On rappelle que la tribu borélienne de R est la tribu engen-
drée par les ensembles de la forme ]a, b[; (a, b)2 ∈ Q. Montrer que la tribu
borélienne est également la tribu engendrée par les familles

— C = {] − ∞, a[; a ∈ Q}.
— D = {] − ∞, a]; a ∈ Q}.
— E = {[a, b[; (a, b)2 ∈ Q}.
— F = {[a, b]; (a, b)2 ∈ Q}.

Exercice 16. Pour n entier strictement positif, on note An = nN∗. Notons
P l’ensemble des nombres premiers positifs et T la sous-tribu de (N∗,B(N∗))
engendrée par les (Ap)p∈P .

1. Montrer que l’ensemble C des entiers qui sont premiers avec 2000 est
T -mesurable.
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2. Montrer que l’ensemble B = {2k; k ∈ N∗} des puissances de deux est
T -mesurable.

Exercice 17. Soit (E, d) un espace métrique. Montrer que la tribu borélienne
B(E) engendrée par les ouverts de E est aussi la plus petite tribu rendant
mesurables toutes les applications continues de (E, d) dans R (muni de la
tribu borélienne et de la topologie usuelle).

Exercice 18. Lemme de Doob
Soit X et Y deux applications mesurables de (Ω,A) dans (R,B(R)). On veut
montrer que Y est σ(X)-mesurable si et seulement si il existe une application
mesurable f de (R,B(R)) dans lui-même telle que Y = f ◦X.

1. Traiter le sens “facile” : si Y = f ◦X, alors . . .
2. Traiter la réciproque, lorsque Y est une fonction simple (étagée).
3. Passer au cas général.

Exercice 19. Support d’une mesure sur Rd

1. Soit µ une mesure sur (Rd,B(Rd)). On appelle support de µ l’ensemble
des x ∈ Rd tels que tout ouvert contenant x est de mesure positive.
Montrer que le support de µ est fermé.

2. Soit O un ouvert de Rd. Montrer qu’il existe un ensemble dénombrable
D, des familles (xn)n∈D, (rn)n∈D avec xn ∈ Qd et rn ∈ Q+

∗ et O =
∪

n∈D
B(xn, rn).

3. Soit µ une mesure sur (Rd,B(Rd)). Montrer qu’il existe un ouvert
O maximal (pour l’inclusion) de mesure nulle, puis que Rd\O est le
support de µ.

On notera que la définition donnée à la première question est encore valide
dans tout espace topologique muni de sa tribu borélienne. La caractérisation
donnée dans la dernière question est encore vraie si l’espace est à base dé-
nombrable (c’est le cas, comme ici, des espaces métriques séparables (avec
une partie dénombrable dense)) ou si µ est une mesure finie.
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Chapitre 3

Espace probabilisé

Voyons maintenant la définition d’une probabilité sur (Ω,F).

3.1 Espace probabilisé
On appelle
— probabilité
— ou mesure de probabilité
— ou loi
sur (Ω,F) toute application

P : F → [0, 1]

vérifiant les propriétés suivantes :
1. P(∅) = 0, P(Ω) = 1.
2. Pour toute suite (Ai)i∈N d’éléments de F deux à deux disjoints,

P(
+∞
∪

i=1
Ai) =

+∞∑
i=1

P(Ai).

Alors, le triplet (Ω,F ,P) est appelé espace probabilisé.
On remarque qu’un espace probabilisé est très exactement un espace me-

suré associé à une mesure positive de masse totale 1.
Remarque sur le vocabulaire : l’image P(A) d’un événemement A par
l’application P est appelée probabilité de cet événement. Ainsi le mot “pro-
babilité” peut-il désigner à la fois une application et la valeur de cette appli-
cation en un point. Le contexte doit permettre de lever toute ambiguité.

Les propositions suivantes sont alors des conséquences relativement faciles
des définitions :

1. Pour toute suite (Ai)1≤i≤n d’éléments de F deux à deux disjoints,

P(
n
∪

i=1
Ai) =

n∑
i=1

P(Ai).

2. ∀A,B ∈ F (A ∩B = ∅) =⇒ (P(A ∪B) = P(A) + P(B))
3. ∀A ∈ F P(Ac) = 1 − P(A)
4. ∀A,B ∈ F P(A ∪B) = P(A) + P(B) − P(A ∩B)
5. ∀A,B ∈ F P(A ∪B) ≤ P(A) + P(B)
6. ∀A,B ∈ F (A ⊂ B) =⇒ (P(A) ≤ P(B))

27
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7. ∀A,B ∈ F P(A ∩B) ≤ min(P(A),P(B))
8. ∀A,B ∈ F P(A ∪B) ≥ max(P(A),P(B))
9. Pour toute suite (Ai)i≥1 d’éléments de F ,

P(
+∞
∪

i=1
Ai) ≤

+∞∑
i=1

P(Ai).

10. Si (Ai)i∈N est une suite croissante d’événements
(c’est à dire que ∀n ∈ N An ⊂ An+1))
et que l’on pose A =

+∞
∪

i=1
Ai, alors la suite (P(An))n∈N est monotone,

croissante, et converge vers P(A).
11. Si (Ai)i∈N est une suite décroissante d’événements

(c’est à dire que ∀n ∈ N An+1 ⊂ An))
et que l’on pose A =

+∞
∩

i=1
Ai, alors la suite (P(An))n∈N est monotone,

décroissante, et converge vers P(A).

Démonstration. Il suffit de particuliser aux cas d’une mesure de masse 1 les
propriétés des mesures démontrées au chapitre précédent.

3.2 Partitions et probabilités
Le théorème très simple qui suit est très fréquemment utilisé. Il traduit

le fait que pour calculer une probabilité, il faut parfois diviser les cas.
Théorème 20. Soit (Ω,F ,P) un espace probabilisé. Soit I un ensemble d’in-
dex fini ou dénombrable et (Ωi)i∈I une partition de Ω. Alors on a

∀A ∈ F P(A) =
∑
i∈I

P(A ∩ Ωi).

Démonstration. Comme la famille (Ωi)i∈I une partition de Ω, la famille (A∩
Ωi)i∈I est une partition de A. A est donc réunion disjointe des (A ∩ Ωi)i∈I ,
donc P(A) = ∑

i∈I P(A ∩ Ωi).

3.3 Probabilité conditionnelle
Soit (Ω,F ,P) un espace de probabilité et B un événement observable

de probabilité non nulle. On appelle probabilité conditionnelle sachant B
l’application

P(.|B) : F → R

A 7→ P(A|B) = P(A ∩B)
P(B)

P(A|B) se lit "Probabilité de A sachant B".
On a évidemment

P(A ∩B) = P(B)P(A|B). (3.1)

Remarque : L’application "probabilité conditionnelle" est une probabi-
lité. Elle vérifie donc toutes les propriétés énoncées précédemment.
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3.3.1 Conditionnements en chaîne
Si A,B sont deux événements observables avec A ⊂ B et P(B) ̸= 0, la

formule (3.1) devient
P(A) = P(B)P(A|B). (3.2)

On a la généralisation suivante :

Théorème 21. Soient n ≥ 2 et E1, . . . , En des événements observables vé-
rifiant

En ⊂ En−1 ⊂ · · · ⊂ E1

et P(En−1) > 0. Alors on a

P(En) = P(En|En−1)P(En−1|En−2) . . .P(E2|E1)P(E1)

Démonstration. La formule se montre par récurrence sur n. Pour n = 2,
c’est une conséquence immédiate de (3.2). Pour n > 2, on applique d’abord
la formule pour n = 2 aux événements En et En−1 :

P(En) = P(En|En−1)P(En−1),

puis on applique la propriété de récurrence au rang n− 1.

Exemple : (d’après André Franquin) Chez les papous, il y a les papous
à poux et les papous pas à poux. La probabilité pour qu’un papou ait des
poux vaut 0.1. De plus, chez les papous, il y a les papous papas et les papous
pas papas. La probabilité pour qu’un papou à poux soit papa vaut 0.6. Or,
chez les poux, il y a les poux papas et les poux pas papas : la probabilité
pour qu’un papou à poux possède au moins un pou papa est de 0.8.

Question : on tire au hasard un papou. Quelle est la probabilité pour que
ce soit un papa papou à poux papa ? Réponse : 0.8 × 0.6 × 0.1 = 0.048.

Ce théorème est parfois énoncé sous la forme plus compliquée – mais
équivalente – suivante.

Théorème 22. Soient n ≥ 2 et A1, . . . , An des événements observables avec
P(A1 ∩ A2 ∩ · · · ∩ An−1) > 0. Alors

P(A1 ∩A2 ∩· · ·∩An) = (
n−1∏
k=1

P(A1 ∩A2 ∩· · ·∩Ak+1|A1 ∩A2 ∩· · ·∩Ak))P(A1)

Démonstration. Il suffit de poser, pour 1 ≤ i ≤ n, Ei =
i
∩

k=1
Ak et d’appli-

quer le théorème précédent.

3.3.2 Conditionnement par tous les cas possibles
Ceci est l’expression en termes de probabilités conditionnelles du principe

de partition.
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Théorème 23. Soit (Ω,F ,P) un espace probabilisé. Soit I un ensemble d’in-
dex fini ou dénombrable et (Ωi)i∈I une partition de Ω. Alors on a

∀A ∈ F P(A) =
∑
i∈J

P(A|Ωi)P(Ωi),

où J = {i ∈ I;P(Ωi) > 0}.

Démonstration. D’après le théorème 20, on a

P(A) =
∑
i∈I

P(A ∩ Ωi)

=
∑
i∈J

P(A ∩ Ωi) +
∑

i∈I\J

P(A ∩ Ωi)

=
∑
i∈J

P(A ∩ Ωi)

=
∑
i∈J

P(A|Ωi)P(Ωi)

3.3.3 Formule de Bayes
Théorème 24. Soit (Ω,F ,P) un espace probabilisé. Soit I un ensemble d’in-
dex fini ou dénombrable et (Ωi)i∈I une partition de Ω telle que pour tout i ∈ I,
P(Ωi) soit non nul. Soit A un élément de probabilité non nulle.

Alors on a, pour tout j ∈ I, la formule

P(Ωj|A) = P(A|Ωj)P(Ωj)∑
i∈I

P(A|Ωi)P(Ωi)
.

Démonstration.

P(Ωj|A) = P(A ∩ Ωj)
P(A)

= P(A|Ωj)P(Ωj)
P(A)

et on applique le théorème précédent.

Exemple :
— 60% des étudiants qui vont en T.D. obtiennent l’examen.
— 10% des étudiants qui ne vont pas en T.D. obtiennent l’examen.
— 70% des étudiants vont en T.D.

Quelle proportion des lauréats a séché les cours ? On note A l’événement
"être assidu en cours". On a P(A) = 0.7, et donc P(Ac) = 0.3. On note L
l’événement "obtenir l’examen" : on a P(L|Ac) = 0.1 et P(L|A) = 0.6. On a
alors

P(Ac|L) = P(L|Ac)P(Ac)
P(L|Ac)P(Ac) + P(L|A)P(A)

= 0.1 × 0.3
0.1 × 0.3 + 0.6 × 0.7

= 3
45

= 1
15
.
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3.4 Indépendance

3.4.1 Événements indépendants
On dit que deux événements observables A et B sont indépendants si on

a
P(A ∩B) = P(A)P(B).

Soit (Ai)i∈G une partie d’éléments de F indexés par un ensemble G. On
dit que les événements constituant la famille (Ai)i∈G sont globalement indé-
pendants si l’on a pour tout ensemble fini I ⊂ G :

P( ∩
i∈I

Ai) =
∏
i∈I

P(Ai).

3.4.2 Tribus indépendantes
Soit (Ω,F ,P) un espace probabilisé ; A et B deux sous-tribus de F . On

dit que les tribus A et B sont indépendantes sous P si

∀A ∈ A ∀B ∈ B P(A ∩B) = P(A)P(B).

Plus généralement, si (Ai)i∈I est une famille de sous-tribus de F , on dit
que cette famille est indépendante sous P si pour tout ensemble fini J ⊂ I,
on a

∀(Ai)i∈J ∈
∏

i∈J
Ai P( ∩

i∈J
Ai) =

∏
i∈J

P(Ai).

Remarque : Si I est fini et que (Ai)i∈I est une famille de sous-tribus de
F , cette famille est indépendante sous P si et seulement si on a

∀(Ai)i∈I ∈
∏
i∈I

Ai P( ∩
i∈I

Ai) =
∏
i∈I

P(Ai).

Il suffit en effet de poser Ai = Ω pour i ∈ I\J pour exprimer une intersection
indexée par J en une intersection indexée par I.

Exercice : Soient A,B ∈ F . Montrer que A est indépendant de B si et
seulement si la tribu σ(A) est indépendante de la tribu σ(B).

Remarque utile : Si les tribus A et B sont indépendantes sous P , que
A′ est une sous-tribu de A et B′ est une sous-tribu de B, alors les tribus A′

et B’ sont indépendantes sous P .

3.4.3 Indépendance et tribus engendrées
Définition On dit qu’une famille C de parties de Ω est un π-système si

∀(A,B) ∈ C × C A ∩B ∈ C.

On donne maintenant un résultat général de théorie de la mesure très
utile. Sa preuve, basée sur le théorème λ− π de Dynkin, est admise ici. 1

1. Le lecteur intéressé pourra se référer à la dernière section de ce chapitre ainsi qu’à la
section 3.3 de l’ouvrage de Patrick Billingsley : Probability and measure, précisément aux
théorèmes 3.2 et 3.3.
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Proposition 1 (Critère d’identitification d’une probabilité). Soit P et Q
deux probabilités sur l’espace mesuré (Ω,F). On suppose qu’il existe un π-
système C qui engendre F (σ(C) = F) et sur lequels P et Q coïncident, c’est
à dire que

∀A ∈ C P (A) = Q(A).
Alors P = Q.

Théorème 25. Soit C et D deux familles de parties mesurables de (Ω,F).
On suppose que C et D sont des π-systèmes et que pour tout (A,B) ∈ C × D,
on a P(A ∩ B) = P(A)P(B). Alors, les tribus A = σ(C) et B = σ(D) sont
indépendantes.

Démonstration. Pour A ∈ A, on pose TA = {B ∈ B,P(A∩B) = P(A)P(B)}.
Regardons d’abord le cas où A ∈ C. Si P(A) = 0, alors A est indépendant

de tout, donc TA = B. Si P(A) ̸= 0, on peut définir sur B la probabilité
conditionnelle PA par

∀B ∈ B PA(B) = P(A ∩B)
P(A)

.

Les probabilités P et PA coïncident sur D. Comme D est un π-système qui
engendre B, P et PA coïncident sur B. On en déduit que lorsque A ∈ C, on
a TA = B.

On a donc montré que si C et D sont des π-systèmes, alors

∀(A,B) ∈ C × D P(A ∩B) = P(A)P(B)
=⇒ ∀(A,B) ∈ C × σ(D) P(A ∩B) = P(A)P(B).

Mais, B = σ(D) est lui-même un π-système. Le résultat que l’on vient de
démontrer s’applique cette fois avec (B, C) à la place de (C,D), et on obtient
que

∀(A,B) ∈ C × D P(A ∩B) = P(A)P(B)
=⇒ ∀(A,B) ∈ σ(C) × σ(D) P(A ∩B) = P(A)P(B),

ce qui était notre objectif

Théorème 26. Les deux propriétés suivantes sont équivalentes :
1. Les tribus (Ai)i∈I sont indépendantes
2. Pour tout j ∈ I, la tribu Aj est indépendante de la tribu σ(Ai; i ∈

I\{j}).

Démonstration. — Preuve de 1 =⇒ 2 : Soit j ∈ I. On considère le
π-système C défini par

C = ∪
F ⊆I\{j}

{ ∩
x∈F

Ax; ∀x ∈ F Ax ∈ Ax}.

(Ici, F ⊆ I signifie que F est une partie finie de I.) Il est facile de
voir que C est un π-système qui engendre σ(Ai; i ∈ I\{j}) et que
∀(A,B) ∈ Aj × C P(A∩B) = P(A)P(B). Le théorème 25 permet de
conclure.
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— Preuve de 2 =⇒ 1 :
On montre par récurrence sur n la proposition Pn

Pn : |I| = n =⇒ ∀
∏

x∈I
Ax ∈

∏
x∈I

Ax P( ∩
x∈I

Ax) =
∏

x∈I
P(Ax).

Il est clair que P0 et P1 sont vraies. Montrons Pn =⇒ Pn+1. Soit I un
ensemble de cardinal n + 1. On peut écrire I = J ∪ {x0} avec |J | = n. Soit

E1 =
∏

x∈I
Ax ∈

∏
x∈I

Ax. On a E1 = Ax0 ∩ E2, avec E1 = ∩
x∈J

Ax. Comme

Ax0 ∈ Ax0 et E2 ∈ σ(Ai; i ∈ I\{x0}), l’hypothèse 2 implique P(E1) =
P(Ax0)P(E2). Mais d’après Pn, on a

P(E2) = P( ∩
x∈J

Ax) =
∏

x∈J
P(Ax),

d’où
P(E1) = P(Ax0)P(E2) =

∏
x∈I

P(Ax),

ce qui achève la preuve.

3.5 Théorème λ− π de Dynkin (*)
Cette section peut être omise en première lecture.

On dit que L ⊂ P(Ω) est un λ-système si on a
— Ω ∈ L
— ∀A,B ∈ L A ⊂ B =⇒ B\A ∈ L
— Pour toute suite croissante (An)n≥1 d’éléments de L, ∪

n≥1
An ∈ L

On peut déjà remarquer que si A ⊂ P(Ω) est à la fois un λ-système et un
π-système, alors A est une tribu. En effet, soit (An)n≥1 une suite d’éléments

de A. Si on pose A′
n =

n
∪

k=1
Ak = Ω\(

n
∩

k=1
Ac

k), on a A′
n ∈ A (on utilise la

stabilité par intersection finie et par complémentation). Donc, comme A ⊂
P(Ω) est un λ-système A = ∪

n≥1
An = ∪

n≥1
A′

n ∈ A, d’après le troisième
axiome d’un λ-système.

Théorème 27 (Théorème λ − π). Si P est un π-système et L est un λ-
système, alors P ⊂ L entraîne σ(P) ⊂ L.

Démonstration. Voir par exemple Billingsley, théorème 3.2

Preuve de la proposition 1 :

Démonstration. Si on regarde l’ensemble L des parties de A de la tribu en-
gendrée par le π-système qui sont telles que P(A) = Q(A), il n’est pas difficile
(en utilisant notamment le théorème de continuité séquentielle croissante) de
voir que L est un λ-système ; il suffit alors d’appliquer le théorème λ−π.
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3.6 Premiers exercices de probabilités
Exercice 20. (*)Soient I un ensemble fini, (Ai)i∈I des événements indépen-
dants. Montrer que les événements (Ac

i)i∈I sont indépendants.

Exercice 21. (*) On note Ω = N∗, que l’on munit de la tribu F = P(Ω) et
de la mesure de comptage C. Pour s > 1, on pose

ζ(s) =
+∞∑
k=1

1
ks

< +∞.

1. Montrer que lim
s→1+

ζ(s) = +∞.

2. Soit s > 1. On note µs la mesure sur (Ω,F) telle que

∀i ∈ N∗ µs({i}) = 1
ζ(s)

1
is
.

Vérifier que µs est une mesure de probabilité.
Soit p un entier naturel non-nul. Montrer que µs(pN∗) = 1

ps .
3. On note (pk)k≥1 la suite des nombres premiers. On pose Ak = pkN∗.

Montrer que
{1} =

+∞
∩

k=1
Ac

k.

En déduire soigneusement que

1
ζ(s)

= lim
n→+∞

µs

(
n
∩

k=1
Ac

k

)
.

4. Montrer que les événements (Ak)k≥1 sont indépendants sous µs.
5. Donner une preuve probabiliste de l’identité

∀s > 1 log ζ(s) = lim
n→+∞

n∑
k=1

− log(1 − 1
ps

k

).

6. Montrer que les séries de termes généraux respectifs
(
− log(1 − 1

pk
)
)

k≥1

et
(

1
pk

)
k≥1

sont divergentes.

7. Dans cette question, on s’attache à montrer le résultat suivant : il
n’existe pas de mesure de probabilité µ sur N telle que pour tout
n ≥ 1, on ait µ(nN) = 1

n
2.

On raisonne donc par l’absurde et on suppose qu’une telle mesure de
probabilité existe.

2. Si vous savez déjà ce qu’est une variable aléatoire, on peut présenter le résultat
sous la forme plus agréable suivante : il est impossible de construire un espace probabilisé
(Ω, F ,P) et une variable aléatoire X à valeurs entières sur cet espace tels que

∀n ≥ 1 P(n divise X) = 1
n

.

En effet, la mesure de probabilité µ = PX contradirait le résultat de l’exercice.
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(a) Soient n et ℓ des entiers avec ℓ > n ≥ 1. Établir l’inégalité

µ({n}) ≤
ℓ∏

i=n

(
1 − 1

pi

)
.

Indication : on pourra remarquer que les (piN)i≥1 sont indépen-
dants sous µ.

(b) Conclure.

Exercice 22. (*)On s’intéresse au problème des dérangements : n mathéma-
ticiens déposent leurs chapeaux au vestiaire au début d’un congrès et, à la
fin du congrès, en reprennent un au hasard par distraction. On s’intéresse à
la probabilité pn qu’aucun ne retrouve son chapeau.

1. Proposer un espace Ω convenable et une probabilité associée. En dé-
duire que l’on doit avoir pn = dn

n! , où dn est le nombre de permutations
de Sn sans point fixe :

dn = Card({σ ∈ Sn; ∀1 ≤ i ≤ n σ(i) ̸= i}).

(On pose d0 = 1.)
2. Pour 0 ≤ k ≤ n, on note An

k l’ensemble des permutations de Sn ayant
exactement k points fixes :

An
k = {σ ∈ Sn; Card({i ∈ 1, . . . , d | σ(i) = i}) = k}.

Montrer Card(An
k) =

(
n
k

)
dn−k. En déduire

n∑
k=0

(
n

k

)
dk = n!

3. Soit Φ l’endomorphisme de Rn[X] défini par Φ(P ) = P (X+ 1) (où on
rappelle que Rn[X] désigne l’ensemble des polynômes réels de degré
inférieur ou égal à n). Déterminer la matrice M de Φ dans la base
(1, X, . . . , Xn). Calculer M−1.

4. Montrer que (d0, d1, . . . , dn).M = (0!, 1!, . . . , n!). En déduire que

pn = dn

n!
=

n∑
k=0

(−1)k

k!
.

5. Montrer lim
n→+∞

pn = 1
e
. Montrer que pour n ≥ 2, dn est l’entier le

plus proche de n!
e

.

Exercice 23. Soit (An)n≥1 une suite d’événements indépendants, tous de
probabilité non nulle. On pose

A =
+∞
∩

n=1
An

et
B = lim

n→+∞
An = ∪

n=1

+∞
∩

k=n
Ak.

Montrer que P(A) = 0 si et seulement si P(B) = 0
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Exercice 24. Une enquête effectuée parmi les nouveaux adhérents du parti
socialiste français en 2002 a montré que les femmes représentaient 40, 55%
des nouveaux adhérents. 20, 4% des nouvelles militantes socialistes sont en-
seignantes, tandis que seulement 12, 81% des nouveaux militants de sexe mas-
culin sont enseignants. Parmi les enseignants qui militent nouvellement au
parti socialiste, quelle est la proportion de femmes ?
Exercice 25. Calcul probabiliste de la formule de l’indicatrice d’Euler
On note Ωn l’ensemble des entiers de 1 à n. On note n = ∏

i p
αi
i la décom-

position de n en produits de facteurs premiers. Le but de cet exercice est de
déterminer le nombre φ(n) qui est le cardinal de l’ensemble Gn des d’entiers
entre 1 et n qui sont premiers avec n. On note P la loi uniforme sur Ωn.

1. Pour d divisant n, on note Ad = {k ∈ Ωn; d|k}. Calculer P(Ad).
2. Soit d1, . . . , dr des diviseurs de n premiers entre eux. Calculer P(∩r

i=1Adi
).

3. Montrer que P(Gn) = 1 − P(∪iApi
).

4. En déduire que φ(n)/n = ∏
i(1 − 1/pi).

Exercice 26. On mélange n(n ≥ 6) paires de chaussetttes et l’on tire au
hasard 6 chaussettes. On considère les événements suivants : E1 = { obtenir
trois paires }, E2 = { obtenir au moins une paire }, E3 = { obtenir une seule
paire }. En supposant que tous les ensembles de 6 chaussettes ont la même
probabilité d’être tirés, calculer P(E1),P(E2),P(E3).
Exercice 27. On choisit au hasard, successivement et sans remise trois
nombres parmi {1, ..., n}. Calculer la probabilité que le troisième nombre
tiré se trouve entre les deux premiers.
Exercice 28. Une élection a lieu entre deux candidats A et B. Le premier
candidat A obtient a voix et le second B obtient b voix avec a > b.

1. Représenter le dépouillement des bulletins à l’aide d’un chemin dans
R2 partant de (0, 0) arrivant à (a, b) constitué uniquement de segments
de longueur 1, parallèles à l’axe Ox ou Oy, orientés dans le sens crois-
sant. En déduire un modèle équiprobable concernant le dépouillement.

2. Quelle est la probabilité pour qu’au cours du dépouillement,
— le premier bulletin soit en faveur de B ?
— A et B se retrouvent à un instant à égalité ? (indic. : distinguer

suivant le premier bulletin)
— A ait toujours strictement plus de voix que B ?

Exercice 29. Donner un exemple de trois évènements A1, A2, A3 qui ne sont
pas indépendants et pour lesquels

P(A1 ∩ A2 ∩ A3) = P(A1)P(A2)P(A3) .

Exercice 30. Valeurs d’adhérence de la suite φ(n)/n
1. Montrer que pour toute série divergente positive dont le terme général

(un) tend vers 0, et pour tout ℓ > 0, on peut extraire une sous-série

(unk
) telle que

+∞∑
k=1

unk
= ℓ.

2. On note φ(n) l’indicatrice d’Euler. Montrer que l’ensemble des valeurs
d’adhérences de la suite (φ(n)/n)n≥1 est l’intervalle [0, 1] tout entier.



Chapitre 4

Intégrales

Jusqu’ici, on n’a parlé que de mesures et nullement d’intégrales. Le présent
chapitre va pleinement compenser cela !

On va commencer par donner la définition de l’intégrale dite “de Lebes-
gue” et en énoncer les propriétés fondamentales. Vu le volume horaire du
cours, certains résultats seront admis afin de se concentrer sur la pratique.

4.1 Définition de l’intégrale et propriétés de
base

4.1.1 Définition
Soit (Ω,F , µ) un espace mesuré. Pour toute fonction positive f , on définit

l’intégrale de f , notée
∫
f dµ ou encore

∫
f(x) dµ(x) par∫

f dµ = sup
∑

i

inf{f(ω);ω ∈ Ωi}µ(Ωi),

où le sup porte sur toutes les partitions finies de Ω.
Lorsque f prend des valeurs négatives, on écrit f comme différence de

deux fonctions positives :

f = f+ − f−, où f+(ω) = max(f(ω), 0) et f−(ω) = max(−f(ω), 0)

Lorsque
∫
f+ dµ et

∫
f− dµ sont simultanément finies, on dit que f est

intégrable et on peut définir∫
f dµ =

∫
f+ dµ−

∫
f− dµ.

Lorsque
∫
f+ dµ et

∫
f− dµ sont, l’un fini, l’autre infini, on s’autorise

toutefois à écrire
—

∫
f dµ = +∞ si

∫
f+ dµ = +∞ et

∫
f− dµ < +∞.

—
∫
f dµ = −∞ si

∫
f+ dµ < +∞ et

∫
f− dµ = +∞.

4.1.2 Propriétés de base de l’intégrale
Définition : on dit qu’une propriété P relative aux points de Ω est vérifiée

µ-presque partout si il existe E mesurable avec µ(E) = 0 tel que pour tout
x ∈ Ω\E P(x) est vérifié.

37
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On donne d’emblée sans démonstration les propriétés de base de l’inté-
grale :

— Lien avec la mesure : Pour tout ensembleAmesurable, on a
∫

11A dµ =
µ(A).

— Positivité : Si f et g sont intégrables avec f ≤ g µ-presque partout,
alors

∫
f dµ ≤

∫
g dµ, avec égalité si et seulement si f = g µ-presque

partout. En particularité, si f ≥ 0 µ-presque partout et
∫
f dµ = 0,

alors f = 0 µ-presque partout.
— Linéarité : Si f et g sont intégrables, α et β des réels, alors

∫
αf +

β dµ = α
∫
f + β

∫
g dµ

— Convergence monotone (ou théorème de Beppo Levi 1) : Si
(fn)n≥1 est une suite croissante de fonctions mesurables positives conver-
geant presque partout vers f , alors la suite

∫
fn dµ converge vers∫

f dµ. (la limite peut être infinie)
L’objectif prioritaire du lecteur est, nous semble-t’il, d’acquérir une bonne

familiarité des propriétés de cette nouvelle intégrale. Aussi, afin de ne pas
lasser par des preuves un peu techniques qui arriveraient avant que l’intérêt
de l’outil soit réellement compris, nous rapportons les preuves à une section
ultérieure qui viendra en fin de chapitre.

4.1.3 Conséquences importantes
Théorème 28 (Lemme de Fatou). Pour toute suite (fn)n≥1 de fonctions
mesurables positives, on a

∫
lim

n→+∞
fn dµ ≤ lim

n→+∞

∫
fn dµ

Démonstration. Il suffit de poser gn = infk≥n fk. (gn) est une suite croissante,
dont la limite est, par définition, lim gn = limfn. On a pour tout n

fn ≥ gn∫
fn dµ ≥

∫
gn dµ

D’où

lim
n→+∞

∫
fn dµ ≥ lim

n→+∞

∫
gn dµ

Mais d’après le théorème de convergence monotone
∫
gn dµ converge vers∫

g dµ, ce qui est le résultat voulu.

Théorème 29 (Convergence dominée). Si (fn)n≥1 est une suite de fonctions
mesurables convergeant presque partout vers f , et telle qu’il existe une fonc-
tion g intégrable vérifiant pour tout n, |fn| ≤ g alors la suite

∫
fn dµ converge

vers
∫
f dµ.

1. Beppo Levi (1875-1961) est un mathématicien italien. Pas de trait d’union donc
entre Beppo et Levi !
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Démonstration. Les fn sont intégrables car dominées par g : par suite les
fonctions g+fn et g−fn sont intégrables et positives : on peut leur appliquer
le lemme de Fatou :∫

lim
n→+∞

(g + fn) dµ ≤ lim
n→+∞

∫
(g + fn) dµ

et ∫
lim

n→+∞
(g − fn) dµ ≤ lim

n→+∞

∫
(g − fn) dµ

soit ∫
g dµ+

∫
f dµ ≤

∫
g dµ+ lim

n→+∞

∫
fn dµ

et ∫
g dµ−

∫
f dµ ≤

∫
g dµ− lim

n→+∞

∫
fn dµ

En simplifiant, on obtient
∫
f dµ ≤ lim

n→+∞

∫
fn dµ

et

lim
n→+∞

∫
fn dµ ≤

∫
f dµ

ce qui montre bien le résultat voulu.

4.2 Intégration sur un ensemble
Pour tout ensemble mesurable A et toute fonction intégrable (ou positive)

f , on note ∫
A
f dµ =

∫
f11A dµ.

Théorème 30. Si f est intégrable et que (An)n≥1 est une partition dénom-
brable de Ω, alors ∫

f dµ =
+∞∑
k=1

∫
Ak

f dµ.

Démonstration. On pose fn = f × 11∪n
k=1Ak

= f × (∑n
k=1 11Ak

) et on applique
le théorème de convergence dominée.

4.3 Intégrale d’une fonction à valeurs com-
plexes

Soit (Ω,F , µ) un espace mesuré et f une fonction de Ω dans C. On dit
que que f est mesurable sur (Ω,F , µ) si ses parties réelles le sont. On dit
que que f est intégrable sur (Ω,F , µ) si ses parties réelles le sont. Ainsi si f
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s’écrit f = a+ ib où a et b sont des fonctions à valeurs réelles mesurables, on
peut définir

∫
Ω f dµ par∫

Ω
f dµ =

(∫
Ω
a dµ

)
+ i

(∫
Ω
b dµ

)
.

Il n’est alors pas très difficile de voir que les fonctions intégrables sur
(Ω,F , µ) à valeurs dans C forment un C-espace vectoriel et que l’intégrale
ainsi définie est C-linéaire : quelque soient les fonctions complexes intégrables
sur (Ω,F , µ) et quelque soit α ∈ C, on a∫

Ω
(αf + g) dµ = α

∫
Ω
f dµ+

∫
Ω
g dµ.

Si l’on sait que f est mesurable (c’est à dire que la partie réelle a et la
partie réelle b de f le sont), alors comme

|a| + |b|
2

≤ |f | ≤ |a| + |b|,

alors f sera intégrable si et seulement si |f | l’est.
Enfin, il sera souvent utile de connaître le résultat suivant : si a et b sont

des nombres réels avec a < b et z un nombre complexe non nul, on a
∫

[a,b]
ezx dλ(x) = ebz − eaz

z
.

Dans la suite, la plupart des théorèmes seront énoncés pour des fonctions
à valeurs réelles, mais dans le cas de fonctions à valeurs complexes, on pourra
souvent démontrer un résultat analogue en considérant séparément les parties
réelle et imaginaire.

Par exemple, on peut énoncer :
Théorème 31 (Convergence dominée pour des fonctions complexes). Si
(fn)n≥1 est une suite de fonctions mesurables complexes convergeant presque
partout vers f , et telle qu’il existe une fonction g intégrable vérifiant pour
tout n, |fn| ≤ g alors la suite

∫
fn dµ converge vers

∫
f dµ.

Démonstration. Comme |Re fn| ≤ |fn| ≤ g, on peut appliquer le théorème
de convergence dominée à (Re fn)n≥1. Idem pour (Im fn)n≥1.

Le théorème “évident” suivant mérite tout de de même une démonstra-
tion :
Théorème 32. si f est une fonction complexe intégrable sur (Ω,F , µ), alors

|
∫

Ω
f dµ| ≤

∫
Ω

|f | dµ.

Démonstration. Soit a ∈ C

Re (a
∫

Ω
f dµ) = Re (

∫
Ω
af dµ) =

∫
Ω

Re af dµ

≤
∫

Ω
|af | dµ = |a|

∫
Ω

|f | dµ

Si on prend a =
∫

Ω f dµ, on obtient

|
∫

Ω
f dµ|2 ≤ |

∫
Ω
f dµ|

∫
Ω

|f | dµ,

ce qui donne le résultat voulu.
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4.4 Quelques cas particuliers importants

4.4.1 Intégration par rapport à une masse de Dirac
Théorème 33. Soit (Ω,F) un espace mesuré. On suppose que le singleton
{x} est dans F . Alors, pour toute fonction f mesurable, on a∫

Ω
f dδx = f(x).

Démonstration. Par linéarité, comme f = f+ − f−, il suffit de traiter le cas
où f est positive. Soit (Ωi)i∈I une partition mesurable finie. Posons µ = δx.
Pour tout i ∈ I, on a

µ(Ωi) inf
Ωi

f ≤ µ(Ωi)f(x)

En effet, si x ̸∈ Ωi, les deux membres de l’égalité sont nuls, sinon l’inégalité
inf
Ωi

f ≤ f(x) est conséquence de x ∈ Ωi. En faisant la somme sur i ∈ I, on
obtient ∑

i∈I

µ(Ωi) inf
Ωi

f ≤ (
∑
i∈I

µ(Ωi))f(x) = f(x),

d’où en passant au sup sur toutes les partitions
∫
f dµ ≤ f(x). Cependant,

si l’on prend I = {1, 2}, Ω1 = {x} et Ω2 = {x}c, on a

∑
i∈I

µ(Ωi) inf
Ωi

f = f(x),

d’où l’égalité voulue.

4.4.2 Intégration par rapport à la mesure de comptage
Théorème 34. Soit Ω un ensemble dénombrable. On note C la mesure de
comptage sur (Ω,P(Ω)). Toute fonction définie sur Ω est mesurable. Pour
toute fonction f positive, on a∫

Ω
f(ω) dC(ω) =

∑
k∈Ω

f(k).

Dans le cas général, f est intégrable si et seulement si
∑

k∈Ω
|f(k)| < +∞

et dans ce cas, on a encore l’égalité ci-dessus.

Démonstration. Soit f positive et (Ωi)i∈I une partition de Ω

C(Ωi) inf
Ωi

f =
∑

k∈Ω

(
11Ωi

(k) inf
Ωi

f

)

≤
∑

k∈Ω
(11Ωi

(k)f(k))

D’où en sommant sur I
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∑
i∈I

C(Ωi) inf
Ωi

f ≤
∑
i∈I

∑
k∈Ω

(11Ωi
(k)f(k))

Cependant

∑
i∈I

∑
k∈Ω

(11Ωi
(k)f(k)) =

∑
k∈Ω

(∑
i∈I

11Ωi
(k)f(k)

)

=
∑

k∈Ω
f(k)

d’où en passant au sup
∫

Ω
f(ω) dC(ω) ≤

∑
k∈Ω

f(k).

Réciproquement soit F une partie finie de Ω. On considère la partition
de cardinal |F | + 1, formée des |F | singletons de F et de F c : elle donne lieu
à une somme

∑
k∈F

f(k) + inf
F c

f ≥
∑
k∈F

f(k)

On en déduit ∫
Ω
f(ω) dC(ω) ≥

∑
k∈F

f(k)

En prenant la borne supérieure sur toutes les parties finies de Ω, on obtient∫
Ω
f(ω) dC(ω) ≥

∑
k∈Ω

f(k),

d’où l’égalité voulue. Dans le cas où f est de signe quelconque, la formule
précédente appliquée à |f | donne∫

Ω
|f |(ω) dC(ω) =

∑
k∈Ω

|f(k)|.

Dans le cas où la dernière somme est finie, en appliquant cette fois la formule
à f+ et f−, on a ∫

Ω
f+(ω) dC(ω) =

∑
k∈Ω

f+(k).

et ∫
Ω
f−(ω) dC(ω) =

∑
k∈Ω

f−(k).

Ces deux quantités sont finies car f+ ≤ |f | et f− ≤ |f | : en faisant la
différence, on obtient alors par linéarité∫

Ω
f(ω) dC(ω) =

∑
k∈Ω

f(k).
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4.4.3 Fonctions simples (ou fonctions étagées)
On appelle fonction simple (ou fonction étagée) toute combinaison linéaire

d’indicatrices d’ensembles mesurables.
On peut dire aussi qu’une fonction simple est une fonction mesurable qui

ne prend qu’un nombre fini de valeurs.

Lemme 2. Toute fonction mesurable positive f (éventuellement infinie) peut
s’écrire comme limite simple d’une suite croissante de fonctions simples (fn).

Démonstration. On définit sur [0,+∞] une fonction φn par
φn(x) = 2−n Int(2nx)11[0,n](x) pour x < +∞ et φn(+∞) = n. Évidemment
la suite (φn(∞))n≥n1 tend en croissant vers +∞. Soit x ≥ 0. Évidemment
11[0,n+1](x) ≥ 11[0,n](x) Posons y = 2nx. On a y ≥ Int(y), donc 2y ≥ 2 Int(y).
Mais 2 Int(y) est entier, donc Int(2y) ≥ 2 Int(y), ce qui nous donne finalement
φn+1(x) ≥ φn(x). D’autre part pour n ≥ x, on a x− 2−n ≤ φn(x) ≤ x, donc
φn(x) tend vers x. Il suffit alors de poser fn(x) = φn(f(x)).

4.4.4 Intégration par rapport à une somme de deux
mesures

Théorème 35. Soit (Ω,F) un espace mesuré, µ et ν deux mesures sur
(Ω,F). Soit f une fonction (Ω,F)-(R,B(R)) mesurable positive. On a∫

Ω
f d(µ+ ν) =

∫
Ω
f dµ+

∫
Ω
f dν. (4.1)

Dans le cas où f est de signe quelconque, si
∫

Ω |f | dµ et
∫

Ω |f | dν sont finis,
f est intégrable par rapport à µ+ ν et on a encore (4.1).

Démonstration. Dans le cas où f est l’indicatrice d’un élément de F , l’iden-
tité (4.1) découle de la définition de la mesure somme de deux mesures et de
la valeur de l’intégrale d’une indicatrice. Par linéarité, la formule (4.1) est
encore vraie si f est une combinaison linéaire d’indicatrices d’éléments de
F , autrement dit une fonction simple. En utilisant le lemme 90 et le théo-
rème de convergence monotone, il s’ensuit que l’identité (4.1) est vraie pour
toute fonction mesurable positive. Comme précédemment, le cas général s’en
déduit en séparant partie positive et partie négative.

4.5 Lien avec l’intégrale de Riemann
Théorème 36. Soit f une fonction continue par morceaux sur un intervalle
compact [a, b]. Alors ∫

[a,b]
f(x) dλ(x) =

∫ b

a
f(t) dt.

Démonstration. Avec la relation de Chasles et la linéarité de l’intégrale de
Lebesgue, on peut se ramener au cas où f est continue sur [a, b]. Posons

fn(x) = f

(
a+ Ent(n(x− a)

b− a
)b− a

n

)
.
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Comme f est continue sur [a, b], elle y est uniformément bornée par une
constante M . Comme f est continue sur [a, b], fn(x) y converge partout vers
f(x). Comme |fn| ≤ M11[a,b], le théorème de convergence dominée assure que∫

[a,b] fn(x) dλ(x) converge vers
∫

[a,b] f(x) dλ(x). Cependant

∫
[a,b]

fn(x) dλ(x) = b− a

n

n−1∑
k=0

f(a+ k
b− a

n
).

On reconnait une somme de Riemann qui converge vers
∫ b

a f(x) dx. Finale-
ment,

∫
[a,b] f(x) dλ(x) =

∫ b
a f(t) dt.

Théorème 37. Soit f une fonction positive continue par morceaux sur un in-
tervalle ouvert [a, b[ (b peut valoir +∞). Alors l’intégrale impropre

∫ b
a f(t) dt

est convergente si et seulement si
∫

[a,b[ f(x) dλ(x) < +∞. Dans ce cas
∫

[a,b[
f(x) dλ(x) =

∫ b

a
f(t) dt.

Démonstration. Soit bn une suite de réels de [a, b[ tendant vers b. f11[a,bn]
converge en croissant vers f11[a,b[, donc d’après le théorème de convergence
monotone

∫
[a,b[ f(x) dλ(x) < +∞ est la limite de

∫
[a,bn] f(x) dλ(x) < +∞.

Par définition d’une intégrale impropre,
∫ b

a f(t) dt est la limite de
∫ bn

a f(t) dt,
si elle est finie. Comme

∫
[a,bn] f(x) dλ(x) =

∫ bn
a f(t) dt, le résultat s’ensuit.

Théorème 38. Soit f une fonction continue par morceaux sur un intervalle
ouvert [a, b[ (b peut valoir +∞). Alors f est intégrable sur [a, b[ par rapport
à la mesure de Lebesgue si et seulement si l’intégrale impropre

∫ b
a |f(t)| dt est

convergente. Dans ce cas∫
[a,b[

f(x) dλ(x) =
∫ b

a
f(t) dt.

Démonstration. Dire que f est intégrable sur [a, b[ par rapport à la mesure
de Lebesgue, c’est dire que

∫
[a,b[ |f(x)| dλ(x) < +∞. Le premier point découle

donc du théorème précédent. Soit bn une suite de réels de [a, b[ tendant vers
b. f11[a,bn] converge vers f11[a,b[ et |f11[a,bn]| ≤ |f |, donc d’après le théorème de
convergence dominée

∫
[a,b[ f(x) dλ(x) est la limite de

∫
[a,bn] f(x) dλ(x), c’est à

dire la limite de
∫ bn

a f(x) dx, qui est
∫ b

a f(x) dx, par définition d’une intégrale
impropre.

Il est important de remarquer que la convergence de l’intégrale impropre∫ b
a f(x) dx n’entraîne PAS l’intégrabilité de f .

Ainsi, on verra en exercice que l’intégrale de 0 à +∞ de sin x
x

est une inté-
grale de Riemann impropre convergente ; cependant sin x

x
n’est pas intégrable

sur R+ pour la mesure de Lebesgue.
Pour terminer, quelques remarques élémentaires : l’intérêt de l’intégrale

de Riemann, c’est que l’on sait la calculer !
En particulier grâce au théorème fondamental de l’analyse : si F est une

primitive de f sur [a, b] (c’est à dire si F ′ = f), alors

F (b) − F (a) =
∫ b

a
f(x) dx.
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En particulier, si φ est une fonction monotone strictement croissante, la
dérivée de F ◦ φ est φ′.(f ◦ φ), ce qui nous dit que F ◦ φ est une primitive
de φ′.(f ◦ φ), et donc

∫ b

a
φ′(x).(f ◦ φ)(x) dx = F (φ(b)) − F (φ(a)) =

∫ φ(b)

φ(a)
f(x) dx.

C’est la formule dite “de changement de variable”.

4.6 Applications aux intégrales à paramètre

4.6.1 Continuité d’une intégrale dépendant d’un para-
mètre

Théorème 39. Soit (Ω,F , µ) un espace mesuré. Soit f(x, t) une fonction de
deux variables définie sur Ω × T , où T est un espace métrique. On suppose
que pour tout t ∈ T , la fonction x 7→ f(x, t) est mesurable par rapport à F .
On suppose qu’il existe une fonction g intégrable par rapport à µ telle que
pour tout t ∈ T .

|f(x, t)| ≤ g(x) µ− p.p.

On suppose enfin que pour µ-presque tout x t 7→ f(x, t) est continue..
Alors

F (t) =
∫

Ω
f(x, t) dµ(x)

définit une fonction continue sur T

Démonstration. Que F soit bien définie découle de l’inégalité |f(x, t)| ≤ g(x)
et de l’intégrabilité de g. Soit t ∈ T . Pour montrer que F est continue en
t ∈ T , il suffit de montrer que pour toute suite (tn)n≥1 d’éléments de T
convergeant vers t, F (tn) tend vers F (t). Pour cela, il suffit d’appliquer le
théorème de convergence dominée à la suite fn définie par fn(x) = f(x, tn) :
pour µ-presque tout x, fn(x) converge vers f(x, t) grâce à la continuité de
t 7→ f(x, t) et on a la domination |fn| ≤ g.

4.6.2 Dérivabilité d’une intégrale dépendant d’un pa-
ramètre

Théorème 40. Soit (Ω,F , µ) un espace mesuré. Soit f(x, t) une fonction de
deux variables définie sur Ω × T , où T est un intervalle de R. On suppose
que pour tout t ∈ T , la fonction x 7→ f(x, t) est mesurable par rapport à
F et intégrable par rapport à µ. On suppose enfin que pour µ-presque tout
x t 7→ f(x, t) est dérivable par rapport à t, et qu’il existe une fonction g
intégrable par rapport à µ telle que pour tout t ∈ T .

|∂f
∂t

(x, t)| ≤ g(x) µ− p.p.

Alors
F (t) =

∫
Ω
f(x, t) dµ(x)
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définit une fonction dérivable sur T , avec

F ′(t) =
∫

Ω

∂f

∂t
(x, t) dµ(x)

Démonstration. Il s’agit de montrer que pour toute suite tn de points de T
tendant vers t,

lim
n→+∞

F (tn) − F (t)
tn − t

=
∫

Ω

∂f

∂t
(x, t) dµ(x).

Posons fn(x) = f(x,tn)−f(x,t)
tn−t

.
La suite de fonctions mesurables (fn)n≥1 converge µ presque partout vers
∂f
∂t

(x, t), ce qui assure la mesurabilité de x 7→ ∂f
∂t

(x, t). De plus, d’après
l’inégalité des accroissements finis, on a |fn(x)| ≤ g(x) µ presque partout.
Ainsi, d’après le théorème de convergence dominée,

∫
Ω fn dµ(x) converge vers∫

Ω
∂f
∂t

(x, t) dµ(x), cependant
∫

Ω fn dµ(x) = F (tn)−F (t)
tn−t

, ce qui donne donc le
résultat voulu.

Remarque importante : lorsque l’on veut démontrer la continuité (ou la
dérivabilité) de F (t) défini comme précédemment sur un intervalle T non
compact, il est rare que l’on trouve une fonction majorante g qui convienne
pour toutes les valeurs de T . Cependant, comme la continuité (ou la déri-
vabilité) est une propriété locale, il suffit de montrer que pour tout t ∈ T ,
il existe un voisinage V de t tel l’on ait une majoration uniforme pour les
t ∈ V .

4.7 Mesures à densité
Soit (Ω,F , µ) un espace mesuré Soit f une fonction positive mesurable

de (Ω,F) dans (R,B(R). On peut définir une application ν de (Ω,F) dans
[0,+∞] par

ν(A) =
∫

A
f dµ.

Il n’est pas difficile de démontrer que ν est une mesure (exercice laissé au
lecteur)

On dit que ν est une mesure qui admet une densité par rapport à µ et
que cette densité est f .

En réalité il y a ici au moins un abus de langage : en effet, une même
mesure ne peut elle admettre plusieurs densités par rapport à µ ?
Proposition 2. Soit f et g deux fonctions mesurables étant toutes deux des
densités de ν par rapport à µ. Alors f = g µ presque partout.
Démonstration. Posons A+ = {ω : f(ω) > g(ω)} 0 = ν(A) − ν(A) =∫

A+
f dµ −

∫
A+
g dµ =

∫
A+

(f − g) dµ. De même si l’on pose A− = {ω :
f(ω) < g(ω)} 0 = ν(A) − ν(A) =

∫
A−
f dµ −

∫
A−
g dµ =

∫
A−

(f − g) dµ.
Cependant |f − g| = (f − g)11A+ − (f − g)11A− , donc∫

|f − g| dµ =
∫

(f − g)11A+ dµ−
∫

(f − g)11A− dµ

=
∫

A+
(f − g) dµ−

∫
A−

(f − g) dµ

= 0 − 0 = 0
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Ce qui implique que f = g µ presque partout.

Théorème 41. On suppose que ν est une mesure qui admet une densité f
par rapport à µ. Alors, pour toute fonction mesurable g∫

|g| dν =
∫

|g|f dµ. (4.2)

Si cette quantité est finie, on a alors∫
g dν =

∫
gf dµ. (4.3)

Démonstration. Si g = 11A avec A ∈ F (4.3) est immédiat. Par linéarité, (4.3)
est également vérifié lorsque g est une fonction simple positive. En utilisant
le lemme 90 et le théorème de convergence monotone, il s’ensuit que (4.3)
est vraie pour toute fonction mesurable positive, donc en particulier (4.2) est
vraie pour toute fonction mesurable g. Supposons maintenant que

∫
|g| dν =∫

|g|f dµ < +∞ : on peut alors écrire g = g+ − g− avec
∫
g+ dν < +∞ et∫

g− dν < +∞. Comme g+ et g− sont des fonctions mesurables positives, on
a
∫
g+ dν =

∫
g+f dµ et

∫
g− dν =

∫
g−f dµ. En faisant la différence, on

obtient donc
∫
(g+ − g−) dν =

∫
(g+ − g−)f dµ, soit (4.3).

4.8 Intégration par rapport à une mesure image
Théorème 42. Soit (Ω,F , µ) un espace mesuré, T une application mesurable
de (Ω,F) dans (Ω′,F ′). Soit f une application mesurable de (Ω′,F ′) dans
(R,B(R)). Alors f est intégrable par rapport à µT si et seulement si f ◦T est
intégrable par rapport à µ. Dans ce cas, on a∫

Ω′
f(y) dµT (y) =

∫
Ω
(f ◦ T )(x) dµ(x) (4.4)

Démonstration. Prenons d’abord le cas où f est l’indicatrice d’un ensemble
A ∈ F ′ : on a

∫
Ω′ f dµT =

∫
Ω′ 11A dµT = µT (A) = µ(T−1(A)). D’un autre côté

11A ◦T = 11T −1(A), donc
∫

Ω f ◦T dµ =
∫

Ω 11T −1(A) dµ = µ(T−1(A)).L’égalité (4.4)
est donc vérifiée lorsque lorsque f est l’indicatrice d’un ensemble A ∈ F ′.
Par linéarité, elle est donc vérifiée pour toute fonction étagée mesurable.

Soit maintenant f une application mesurable positive de (Ω′,F ′) dans
(R,B(R)). Il existe une suite croissante d’applications étagées (fn) conver-
geant ponctuellement vers f . Pour tout n, on a∫

Ω′
fn(y) dµT (y) =

∫
Ω
(fn ◦ T )(x) dµ(x)

En appliquant le théorème de convergence monotone, on obtient à la limite∫
Ω′ f(y) dµT (y) =

∫
Ω(f ◦ T )(x) dµ(x). En particulier, pour toute application

mesurable de (Ω′,F ′) dans (R,B(R)), on a
∫

Ω′ |f | dµT =
∫

Ω |f | ◦ T dµ(x), ce
qui montre que bien f est intégrable par rapport à µT si et seulement si f ◦T
est intégrable par rapport à µ. Dans ce cas, f+ et f− sont intégrables, posi-
tives, et en soustrayant l’identité

∫
Ω′ f− dµT =

∫
Ω f

− ◦ T dµ(x) de l’identité∫
Ω′ f+ dµT =

∫
Ω f

+ ◦ T dµ(x), on obtient bien le résultat voulu.
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4.9 Mesure produit
On suppose que (X,X , µ) et (Y,Y , ν) sont des espaces mesurés. On rap-

pelle que X ⊗ Y est la tribu engendrée par les ensembles de type X × Y , où
(X, Y ) décrit X × Y .

4.9.1 Construction de la mesure produit
Lemme 3. Pour tout A ∈ X ⊗ Y, x ∈ X et y ∈ Y , on note

Ay(x) = {y ∈ Y : (x, y) ∈ A}

et
Ax(y) = {x ∈ X : (x, y) ∈ A}.

Alors Ay(x) ∈ Y et Ax(y) ∈ X . De plus, si une fonction f est mesurable de la
tribu X ⊗ Y vers la tribu C, alors pour chaque x fixé la fonction y 7→ f(x, y)
est mesurable par rapport à la tribu Y, et de même pour chaque y fixé la
fonction x 7→ f(x, y) est mesurable par rapport à la tribu X .

Démonstration. On va commencer par montrer la deuxième proposition.
Fixons x ∈ X et montrons que f 1

x : y 7→ f(x, y) est (Y,Y)−(C, C) mesurable.
Notons π1

x : Y → X×Y qui à y associe (x, y). π1
x est (Y,Y)− (X×Y,X ×Y)

mesurable car chacune des composantes est mesurable. Maintenant, l’iden-
tité f 1

x = f ◦π1
x donne la mesurabilité voulue, par composition d’applications

mesurables.
Revenons à la première proposition : la section verticale de niveau x :

Ay(x) = {y ∈ Y : (x, y) ∈ A} peut s’écrire Ay(x) = (f 1
x)−1({1}), avec

f 1
x(y) = 1A(x, y). Or l’application de X×Y dans R qui à (x, y) associe 11A(x, y)

est (X × Y,X × Y) − (R,B(R)) mesurable, donc d’après ce qui précède, f 1
x

est (Y,Y) − (R,B(R)) mesurable, d’où Ay(x) ∈ Y .
On traite de la même manière Ax(y) et f 2

y : x 7→ f(x, y).

Théorème 43. Soit (X,X , µ) et (Y,Y , ν) deux espaces mesurés dont les
mesures µ et ν sont σ-finies. Il existe une unique mesure m sur (X×Y,X ⊗Y)
telles que pour tous X ∈ X et Y ∈ Y, on ait

m(X × Y ) = µ(X)ν(Y ).

On notera dans la suite µ⊗ ν cette mesure. De plus, pour tout E ∈ X ⊗ Y,
les fonctions x 7→ ν(Ey(x)) et y 7→ µ(Ex(y)) sont mesurables et l’on a∫

X
ν(Ey(x)) dµ(x) =

∫
Y
µ(Ex(y)) dν(y) = (µ⊗ ν)(E).

Démonstration. Supposons d’abord que µ et ν sont finies. Soit E dans X ⊗Y ;
d’après le lemme précédent la fonction x 7→ ν(Ey(x)) est bien définie. Notons
T ′ la famille des ensembles E ∈ X ⊗ Y tels que cette fonction soit mesurable
de X dans B(R). Il n’est pas difficile de voir que T ′ est un λ-système (voir la
dernière section du chapitre 3). Mais T ′ contient tous les pavés (les éléments
de X × Y) : en effet, soit prenons E = A × B, avec A ∈ X et B ∈ Y : on a
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Ey(x) = {y ∈ B(x, y) ∈ A × B}. Ainsi Ey(x) = B si x ∈ A et ∅ sinon, et
donc ν(Ey(x)) = ν(B) si x ∈ A et 0 sinon. Ainsi ν(Ey(x)) = ν(B)11A(x), et
x 7→ ν(B)11A(x) est bien une fonction mesurable de X dans B(R). T ′ est donc
un λ-système qui contient un π-système qui engendre X ⊗ Y . Ainsi, d’après
le théorème λ-π, T ′ est X ⊗ Y tout entier. Finalement, pour tout E dans
X ⊗ Y , on peut définir

m1(E) =
∫

X
ν(Ey(x)) dµ(x);

et de même on pourrait définir

m2(E) =
∫

Y
µ(Ex(y)) dν(y).

Prenons à nouveau E = A × B : Ey(x) = {y ∈ B(x, y) ∈ A × B}. Ainsi
Ey(x) = B si x ∈ A et ∅ sinon, et donc ν(Ey(x)) = ν(B) si x ∈ A et 0
sinon. Ainsi m1(E) =

∫
X 11Aν(B) dµ = µ(A)ν(B). En procédant de la même

manière, on obtient m2(E) =
∫

Y 11Bµ(A) dν = µ(A)ν(B). m1 et m2 sont donc
des mesures finies qui coïncident sur les pavés : elles sont donc égales.

Passons maintenant au cas où µ et ν sont σ-finies : on peut partitionner
X (et Y ) en une famille dénombrable d’ensembles de mesure finie : X =
∪∞

i=1Ai et Y = ∪∞
j=1Bj. On peut alors noter mi,j la mesure associée comme

précédemment aux mesures traces ν|Ai
et µ|Bj

. En d’autres termes

mi,j(E) =
∫

X
ν|Ai

(Ey(x)) dµ|Bj
(x) =

∫
Y
µ|Bj

(Ex(y)) dν|Ai
(x)

Alors, il n’est pas difficile de voir que la mesure m = ∑
i

∑
j m

i,j. On a alors

m(A×B) =
∑

i

∑
j

mi,j(A×B ∩ (Ai ×Bj))

=
∑

i

∑
j

mi,j((A ∩ Ai) × (B ∩Bj))

=
∑

i

∑
j

µ(A ∩ Ai)ν(B ∩Bj)

= (
∑

i

µ(A ∩ Ai))(
∑

j

µ(B ∩Bj))

= µ(A)ν(B)

Remarque : il n’est pas difficile de voir que si µ, ν sont des mesures σ-
finies, a et b des réels, alors (aµ) ⊗ (bν) = (ab)(µ ⊗ ν) – utiliser la partie
unicité du théorème.

Exemple : soit (X,X , µ) un espace mesuré avec µ σ-finie, f une applica-
tion mesurable de (X,X ) dans (R,B(R)). On note T l’application de X ×R
dans lui-même qui à (x, y) associe (x, y+ f(x)). Alors, T est une application
mesurable qui laisse invariante la mesure µ⊗ λ.
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Démonstration. T est mesurable car ses composantes sont mesurables. No-
tons m = µ ⊗ λ. Il suffit de montrer que pour tout A ∈ X et tout borélien
de R B, l’ensemble E = A×B vérifie m(E) = m(T−1(E)). On a

m(E) =
∫

X
λ(Ey(x)) dµ(x) et m(T−1E) =

∫
X
λ((T−1(E))y(x)) dµ(x).

Comme on l’a déjà vu, Ey(x) = B si x ∈ A, ∅, sinon, de sorte que λ(Ey(x)) =
λ(B)11A(x). Cependant,

(T−1(E))y(x) = {y ∈ R; (x, y) ∈ T−1(E)} = {y ∈ R; (x, y + f(x)) ∈ E},

qui est donc égal à B − f(x) si x ∈ A, zéro sinon. Ainsi, λ((T−1(E))y(x)) =
λ(B−f(x))11A(x). Maisi on sait que la mesure de Lebesgue est invariante par
translation : λ(B − f(x)) = λ(B). Il n’y a plus qu’à intégrer et on a l’égalité
voulue.

4.9.2 Théorèmes de Fubini et Tonelli
Théorème 44 (Tonelli). Soit (X,X , µ) et (Y,Y , ν) deux espaces mesurés
dont les mesures µ et ν sont σ-finies et f ∈ V+(X × Y,X ⊗ Y).

Pour tout x ∈ X, la fonction y 7→ f(x, y) est mesurable de (Y,Y) dans
(R+,B(R+)) et la fonction

x 7→
∫

Y
f(x, y) dν(y)

est dans V+(X,X ).
De même pour tout y ∈ Y , la fonction x 7→ f(x, y) est mesurable de (X,X )
dans (R+,B(R+))

y 7→
∫

X
f(x, y) dµ(x)

est dans V+(Y,Y).
Enfin, on a les égalités∫

X×Y
f dµ⊗ ν =

∫
X

(∫
Y
f(x, y) dν(y)

)
dµ(x)

et ∫
X×Y

f dµ⊗ ν =
∫

Y

(∫
X
f(x, y) dµ(x)

)
dν(y)

Démonstration. La mesurabilité de y 7→ f(x, y) est une conséquence immé-
diate du lemme 3.

Supposons que f s’écrive comme l’indicatrice d’un ensemble A ∈ X ⊗ Y :
on a alors ∫

Y
f(x, y) dν(y) = ν(Ax)

D’après la deuxième partie du Théorème 43, l’application x 7→
∫

Y f(x, y) dν(y)
est donc mesurable et l’on a∫

X

∫
Y
f(x, y) dν(y) dµ(x) =

∫
X
ν(Ax) dµ(x)

= µ⊗ ν(A)

=
∫

X×Y
f dµ⊗ ν.
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Le résultat s’étend aisément à la classe des fonctions simples par linéarité,
puis à f ∈ V+(X × Y,X ⊗ Y) en utilisant le lemme 90 et le théorème de
convergence monotone.

Théorème 45 (Fubini). Soit (X,X , µ) et (Y,Y , ν) deux espaces mesurés
dont les mesures µ et ν sont σ-finies et f ∈ V(X × Y ,X ⊗ Y). On suppose
que ∫

X×Y
|f | dµ⊗ ν < +∞.

Alors, il existe X ′ ∈ X et Y ′ ∈ Y avec µ(X\X ′) = ν(Y \Y ′) = 0 et

∫
X×Y

f dµ⊗ ν =
∫

X′

(∫
Y
f(x, y) dν(y)

)
dµ(x)

et ∫
X×Y

f dµ⊗ ν =
∫

Y ′

(∫
X
f(x, y) dµ(x)

)
dν(y)

Démonstration. On va juste montrer la première égalité. D’après le théorème
de Tonelli,

∫
X

(∫
Y

|f(x, y)| dν(y)
)
dµ(x) =

∫
X×Y

|f | dµ⊗ ν < +∞

Il s’ensuit que si l’on pose

X ′ = {x ∈ X;
∫

Y
|f(x, y)| dν(y) < +∞},

on a µ(X\X ′) = 0.
Par suite µ⊗ ν(X ×Y \X ′ ×Y ) = µ(X\X ′)ν(Y ) = 0. (On rappelle que dans
R+, 0.∞ = 0.)
Ainsi, comme l’hypothèse

∫
X×Y |f | dµ ⊗ ν < +∞ entraîne l’existence de∫

X×Y f dµ⊗ ν, on peut écrire

∫
X×Y

f dµ⊗ ν =
∫

X′×Y
f dµ⊗ ν

=
∫

X′×Y
(f+ − f−) dµ⊗ ν

=
∫

X′×Y
f+ dµ⊗ ν −

∫
X′×Y

f− dµ⊗ ν

=
∫

X′

(∫
Y
f+(x, y) dν(y)

)
dµ(x) −

∫
X′

(∫
Y
f−(x, y) dν(y)

)
dµ(x)

=
∫

X′

(∫
Y
f+(x, y) dν(y)

)
−
(∫

Y
f−(x, y) dν(y)

)
dµ(x)

=
∫

X′

(∫
Y
f(x, y) dν(y)

)
dµ(x)
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4.9.3 Associativité de la mesure produit

Soient (X,X , µ), (Y,Y , ν), (Z,Z, χ) trois espaces mesurés σ-finis. Comme
précédemment, on note X ⊗ Y ⊗ Z la tribu engendrée par les ensembles de
la forme A×B × C, où (A,B,C) décrit X × Y × Z.

On note φ l’application de (X×Y )×Z → X×Y ×Z : ((x, y), z) 7→ (x, y, z)
et ψ l’application de X × (Y × Z) → X × Y × Z : (x, (y, z)) 7→ (x, y, z).
Alors la mesure image m1 de (µ ⊗ ν) ⊗ χ par φ et la mesure image M2 de
µ⊗ (ν ⊗ χ) par ψ sont égales : on note simplement cette mesure µ⊗ ν ⊗ χ.

Démonstration.

m1(A×B × C) = (µ⊗ ν) ⊗ χ(φ−1(A×B × C))
= (µ⊗ ν) ⊗ χ((A×B) × C)
= µ⊗ ν(A×B)χ(C)
= µ(A)ν(B)χ(C)

m2(A×B × C) = µ⊗ (ν ⊗ χ)(ψ−1(A×B × C))
= µ⊗ (ν ⊗ χ)(A× (B × C))
= µ(A)(ν ⊗ χ)(B × C)
= µ(A)ν(B)χ(C)

Ainsi, les mesures coïncident.

4.9.4 Convolution de mesures

Soit µ et ν deux mesures σ-finies sur (Rd,B(Rd)). On appelle convolée de
µ et ν et on note µ∗ν la mesure image de µ⊗ν par l’application (x, y) 7→ x+y.

On se contente pour l’instant dénoncer quelques propriétés simples : si µ,
ν sont des mesures σ-finies, a et b des réels, alors

— (aµ) ∗ b(ν) = (ab)(µ ∗ ν).
— µ ∗ 0 = 0 ∗ µ = 0.

Démonstration. Soit f : (x, y) 7→ x+ y.

(aµ) ∗ b(ν)(A) = ((aµ) ⊗ b(ν))(f−1(A))
= ab(µ⊗ ν)(f−1(A))
= ab(µ ∗ ν)(A)

µ∗ 0(A) = (µ⊗ 0)(f−1(A)) = 0 et de même 0 ∗µ(A) = (0 ⊗µ)(f−1(A)) =
0
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4.10 Les théorèmes généraux et la mesure de
comptage

Un certain nombre de théorèmes généraux donnent des résultats très pra-
tiques lorsqu’ils sont utilisé avec la mesure de comptage. On va juste en
donner deux, mais le lecteur aura intérêt à relire chaque théorème en se de-
mandant quel résultat on obtient lorsqu’on prend pour une (ou toutes) les
mesures en jeu la mesure de comptage. Bien sûr, il retrouvera parfois des
résultats connus.

Théorème 46. Soit donnée une famille de nombres réels a(k, n) pour k ≥
1, n ≥ 1 entiers. On suppose qu’il existe une suite de nombres réels positifs
(ck)k≥1 avec les propriétés :

∀(n, k) ∈ N∗ × N∗ |a(k, n)| ≤ ck,
+∞∑
k=1

ck < +∞.

On suppose que pour tout k ≥ 1, la limite suivante existe :

lim
n→+∞

a(k, n) = a(k,∞).

Montrer que les deux séries sn =
+∞∑
k=1

a(k, n) et s =
+∞∑
k=1

a(k,∞) convergent

absolument et que l’on a lim
n→+∞

sn = s, soit

lim
n→+∞

+∞∑
k=1

a(k, n) =
+∞∑
k=1

a(k,∞).

Démonstration. Ici, il s’agit d’appliquer le théorème de convergence dominée
à la mesure de comptage.

Théorème 47. Soit (Ω,F , µ) un espace mesuré, (fn)n≥1 une suite de fonc-
tions mesurables positives de (Ω,F , µ) dans (R+,B(R+)). On pose f = ∑+∞

n=1.
Alors ∫

Ω
f dµ =

+∞∑
n=1

∫
Ω
fn dµ.

Démonstration. On peut, au choix, appliquer le théorème de Tonelli à f(n, x) =
fn(x) en intégrant sur N∗×Ω, ou encore appliquer le théorème de convergence
monotone aux sommes partielles.

Remarque : une conséquence de ce théorème, c’est que si la série de terme
général

∫
Ω fn dµ converge, alors f est intégrable et en particulier f(ω) est fini

pour µ-presque tout ω. En particulier, pour une suite fn de fonctions mesu-
rables de signe quelconque, si la série de terme général

∫
Ω |fn| dµ converge, la

série de terme général fn(ω) converge (absolument) pour µ-presque tout ω.

4.11 La mesure de Lebesgue sur Rd.
On appelle mesure de Lebesgue sur Rd la mesure λ⊗d. On la note parfois

λd, parfois même λ lorsqu’il n’y a pas de confusion possible (mais ce n’est
pas une très bonne idée quand on débute).
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4.11.1 Transformations affines
Théorème 48. Soit y ∈ Rd. La translation x 7→ x + y laisse invariant la
mesure de Lebesgue sur Rd.

Démonstration. Il suffit de vérifier l’invariance pour un pavé, ce qui est im-
médiat.

Théorème 49. Soit M ∈ SLd(R) (c’est à dire que detM = 1). L’application
x 7→ Mx laisse invariant la mesure de Lebesgue sur Rd.

Démonstration. Un théorème d’algèbre linéaire dit que tout élément de SLd(R)
peut s’écrire comme produit de matrices de transvections, c’est à dire de ma-
trices de la forme

1 O
1 λ

.
O 1

1

 = In + λEij avec i ̸= j,

où Eij est la matrice donc tous les coefficients sont nul, sauf celui en (i, j) qui
vaut 1. Ainsi, il suffit de montrer le résultat pour une matrice de transvection.
Mais dans ce cas, c’est un cas particulier de l’exemple vu plus haut.

Théorème 50. Soit M ∈ Md(R). Pour tout borélien A, on a λd(A) =
| detM |λd(A).

Démonstration. Dans le cas où M = diag(λ, 1, . . . , 1), on vérifie facilement
la formule lorsque A est un pavé : on a deux mesures qui coïncident sur un
π-système qui engendre la tribu, elles sont donc égales. Passons au cas où M
est inversible : on peut écrire M = diag(detM, 1, . . . , 1)N , et N ∈ SLd(R).
Ainsi

λd(MA) = λd(diag(detM, 1, . . . , 1)NA) = | detM |λd(NA)
= | detM |λd(N−1(NA)) = | detM |λd(A).

Reste le cas où M est non-inversible, dans ce cas detM = 0, donc il faut
montrer que λd(MA) = 0, pour cela il suffit de montrer que λd(Im M) = 0.
Or Im M est un espace vectoriel de dimension n − 1, il existe donc une
application inversible qui envoie Im M dans Rd−1 × {0}. Comme Rn−1 × {0}
est de mesure nulle, Im M aussi.

Corollaire 6. Si M est inversible, la mesure image de λd par x 7→ Mx + b
est 1

| det M |λ
d.

Corollaire 7. Soit M inversible et b ∈ Rd. On pose T (x) = Mx+ b.
Soit maintenant µ1 une mesure positive sur Rd admettant une densité f1

par rapport à la mesure de Lebesgue sur Rd. Alors, la mesure image de µ1
par T admet comme densité par rapport à la mesure de Lebesgue sur Rd la
fonction f2 définie par

f2(y) = 1
| detM |

f1(T−1(y)).
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Démonstration. Soit g une fonction mesurable positive sur O2. Notons µ2 la
mesure image de µ1 par T . D’après le théorème de transfert,

∫
Rd
g dµ2 =

∫
Rd

(g ◦ T ) dµ1

=
∫
Rd

(g ◦ T )f1 dλ
d

=
∫
Rd

(g ◦ T )(f1 ◦ T−1 ◦ T ) dλd

=
∫
Rd

(g × f1 ◦ T−1) ◦ T dλd

=
∫
Rd

(g × f1 ◦ T−1) dλd
T

=
∫
Rd
g × (f1 ◦ T−1) 1

| detM |
dλ

ce qui donne le résultat voulu.

Les théorèmes qui précèdent correspondent à des transformations affines,
ou si l’on préfère, à des changement de variables affines. On va maintenant
voir le cas général.

4.11.2 Changement de variables C1

Théorème 51. Soit U,U ′ deux ouverts de Rd, φ un C1-difféomorphisme de
U dans U ′. Soit f une application mesurable sur U ′. f est intégrable sur U ′

si et seulement si f ◦ φ(.) × | detD. φ| est intégrable sur U et dans ce cas

∫
U ′
f(y) dλ(y) =

∫
U
f(φ(x)) × | detDx φ| dλ(x).

Ce théorème est admis

Corollaire 8. Soit O1 et O2 deux ouverts de Rd, d ≥ 1. On suppose que T
est un C1-difféomorphisme de O1 dans O2. Soit maintenant µ1 une mesure
positive sur Rd telle que µ1(Rd\O1) = 0 et admettant une densité f1 par
rapport à la mesure de Lebesgue sur Rd. Alors, la mesure image de µ1 par T
admet comme densité par rapport à la mesure de Lebesgue sur Rd la fonction
f2 définie par

f2(y) =
{
f1(T−1(y))| detDT−1

y | si y ∈ O2
0 si y /∈ O2

Démonstration. Soit g une fonction mesurable positive sur O2. Notons µ2 la
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mesure image de µ1 par T . D’après le théorème de transfert,∫
O2
g dµ2 =

∫
O1

(g ◦ T ) dµ1

=
∫

O1
(g ◦ T )f1 dλ

=
∫

O1
(g ◦ T )f1 | detDT (x).T

−1|| detDxT | dλ

=
∫

O1
(g × (f1 ◦ T−1) × | detD.T

−1|) ◦ T | detDxT | dλ

=
∫

O2
g × (f1 ◦ T−1) × | detD.T

−1| dλ

ce qui donne le résultat voulu.
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4.12 Premiers exercices d’intégration
Exercice 31. Soit Cb l’ensemble des fonctions continues bornées sur R. Soient
µ et ν deux mesures finies sur (R,B(R)). Montrer que si pour toute f ∈ Cb,∫
R f dµ =

∫
R f dν, alors µ = ν.

Exercice 32. Soit µ une mesure finie sur (Ω,F) et f une application finie
µ-presque partout. Montrer que les quatre conditions suivantes sont équiva-
lentes :

1. f est intégrable par rapport à µ.
2.
∫

{|f |>n} |f | dµ tend vers 0 quand n tend vers l’infini
3. ∑n≥1 nµ(n < |f | ≤ n+ 1) < +∞.
4. ∑n≥0 µ(|f | > n) < +∞.

Indication : montrer a ⇐⇒ b, a ⇐⇒ c, d =⇒ c, (c&b) =⇒ d.

Exercice 33. Soit µ une mesure sur (Ω,F) et f intégrable par rapport à µ
. Montrer que la fonction

g =
+∞∑
n=1

1
n2f

211{n>|f |}

est intégrable par rapport à µ.

Exercice 34. (*)Le but de cet exercice est de montrer le théorème du retour
de Poincaré. Soit (Ω,F , µ) un espace mesuré et T une transformation, c’est
à dire une application mesurable de (Ω,F) dans lui-même. On suppose que
µ est une mesure finie et qu’elle est invariante sous l’action de T , c’est à
dire que la mesure image de µ par l’application T est µ elle-même. Alors, le
théorème du retour dit que pour tout ensemble mesurable A de mesure non
nulle, la suite des itérées (T n(x))n≥0 passe une infinité de fois dans A pour
presque tout x appartenant à A.

1. On pose

N(x) =
+∞∑
n=0

11A(T n(x))

ainsi que Y (x) = exp(−N(x)), avec la convention exp(−(+∞)) = 0.
Montrer que Y est une application mesurable intégrable par rapport
à µ.

2. On pose Z(x) = Y (Tx). Montrer que Y (x) = e−1A(x)Z(x), puis que∫
Y (x) dµ(x) =

∫
Z(x) dµ(x).

3. Conclure.

Exercice 35. Intégration par rapport à une somme de mesures.
Soit (µi)i∈N une suite de mesure définies sur un espace (Ω,F).

1. Montrer que µ = ∑
i∈N µi est une mesure sur (Ω,F).

2. Montrer que pour f mesurable positive, puis pour f intégrable, on a∫
Ω
f dµ =

∑
i∈N

∫
Ω
f dµi.
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Exercice 36. Soit (fn)n≥0 une suite croissante d’applications µ-intégrables
convergeant µ presque partout vers f . On suppose qu’il existe une constante
K telle que

∀n ≥ 0
∫
fn dµ ≤ K.

Montrer que f est µ-intégrable et que
∫

|fn −f | dµ tend vers 0 lorsque n tend
vers l’infini.

Exercice 37. Soit (fn)n≥0 une suite décroissante d’applications µ-mesurables
positives. On suppose que f1 est µ-intégrable. Montrer que (fn) converge
simplement vers une fonction mesurable f , que f est µ-intégrable et que∫

|fn − f | dµ tend vers 0 lorsque n tend vers l’infini.

Exercice 38. Soit f une fonction réelle intégrable sur (Ω,F , µ). Montrer
que si

∫
A f dµ = 0 pour tout A ∈ F , alors f = 0 presque partout.

Exercice 39. (*)Étudier la limite, lorsque n tend vers l’infini de
1.
∫+∞

0
log(x+n)

n
e−x cosx dx

2.
∫ 1

0
1+nx

(1+x)n dx

3.
∫+∞

1
1+nx

(1+x)n dx

Exercice 40. 1. Calculer In =
∫ 1

0 x
n ln x dx pour n ∈ N

2. En déduire la valeur de
∫ 1

0
ln x
1−x

dx, sachant que ∑+∞
n=1 n

−2 = π2/6.

3. En calculant de deux manières différentes l’intégrale
∫ 1

0
(1−x)n ln(x) dx,

montrer que pour n ≥ 0, on a

n∑
k=0

(
n

k

)
(−1)k

(k + 1)2 = Hn+1

n+ 1
, où Hn =

n∑
k=1

1
k
.

Exercice 41. Démontrer que
∫ 1

0
(ex − 1)(log x+ 1

x
) dλ(x) =

+∞∑
n=1

n2 + n+ 1
n(n+ 1)(n+ 1)!

.

Exercice 42. Calculer
∫ 1

0

1
1+x2 dx. En déduire

+∞∑
n=0

(−1)n

2n+1
·

Exercice 43. Démontrer que
∫ +∞

0

sin ax
ex − 1

dx =
+∞∑
n=1

a

n2 + a2 ·

Exercice 44. Démontrer que
∫ 1

0

(x log x)2

1 + x2 dx = 2
+∞∑
n=0

(−1)n

(2n+ 3)3 ·

Exercice 45. Fonction Γ

On définit la fonction Γ sur ]0,+∞[ par

Γ(x) =
∫ +∞

0
e−ttx−1 dλ(t).
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Montrer que cette fonction est bien définie et qu’elle vérifie, pour tout réel
a > 0, l’égalité Γ(a + 1) = a· Γ(a). En particulier, vérifier que pour tout
entier n ≥ 0, on a :

Γ(n+ 1) = n ! et Γ(n+ 1
2

) = Γ(1
2

)· (2n) !
22n·n !

·

Exercice 46. (*)Intégrales de Wallis
1. On pose

Wn =
∫ π/2

0
cosn θ dθ.

Montrer que Wn = n−1
n
Wn−2. En déduire que la suite (nWnWn−1)n≥1

est constante.
2. Montrer WnWn+1 ≤ W 2

n ≤ WnWn−1 ; en déduire l’équivalent Wn ∼√
π
2n

.

Exercice 47. Calcul de l’intégrale de Gauss(*)

1. On pose Jn =
∫√

n
0 (1 − t2

n
)n dt. Montrer que lim

n→+∞
Jn =

∫+∞
0 e−t2

dt.

2. Exprimer Jn en fonction d’une intégrale de Wallis. En déduire la valeur
de l’intégrale de Gauss :∫ +∞

0
e−t2/2 dt = 1

2
√

2π.

Exercice 48. (*)Calcul de Γ(1/2)
Connaissant la valeur de l’intégrale de Gauss, montrer que

Γ(1/2) =
√
π.

Exercice 49. Formule de Stirling
1. Montrer que

∫+∞
2n xne−x dx = o(Γ(n+ 1)).

2. Montrer que Γ(n+1)
e−nnn+1/2 ∼

∫√
n

−
√

n(1 + u√
n
)ne−u

√
n du.

3. Montrer que pour tout x ∈] − 1, 1[, on a ln(1 + x) − x ≤ −x2

6 .

4. On rappelle que
∫+∞

0 e−t2/2 dt = 1
2

√
2π. Montrer que

Γ(n+ 1) ∼
√

2πe−nnn+1/2.

Exercice 50. Fonction Γ (suite)
1. Démontrer que la fonction Γ est de classe C∞ sur ]0,+∞[ et que pour

tout entier n ≥ 1,

Γ(n)(x) =
∫ +∞

0
e−t(log t)ntx−1 dλ(t).

2. Pour tous réels a, s > 0, exprimer
∫ +∞

0
ts−1e−atdλ(t) à l’aide de la

fonction Γ, , puis démontrer que pour tout réel s > 1,
∫ +∞

0

ts−1

et − 1
dλ(t) =

+∞∑
n=1

Γ(s)
ns

< +∞.
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3. Démontrer que pour tout entier n ≥ 0,
∫ +∞

0
t2ne−t2

dλ(t) =
Γ
(
n+ 1

2

)
2

·

4. Démontrer que
∫ +∞

0
e−t2 cos (at) dλ(t) =

√
π

2
exp

(
−a2

4

)
, pour tout

réel a.

Exercice 51. (*)Calcul de l’intégrale de Dirichlet à l’aide d’une intégrale à
paramètre.

1. Montrer que l’intégrale
∫+∞

0
sin t

t
dt est convergente, mais que la fonc-

tion sin t
t

n’est pas intégrable par rapport à la mesure de Lebesgue sur
R+. Montrer de plus l’équivalent à l’infini

∫ nπ
0

| sin t|
t

dt ∼ 2
π

log n.
2. On pose, pour x ≥ 0, F (x) =

∫+∞
0

sin t
t
e−xt dt. Montrer que F est

définie sur R+, dérivable sur ]0,+∞[, avec F ′(x) = − 1
1+x2 .

3. Calculer F et en déduire la valeur de
∫+∞

0
sin t

t
dt.

Exercice 52. (*)Calcul d’intégrales liées aux intégrales de Fresnel
Le but de cet exercice est le calcul des intégrales∫ +∞

0
eiuuα−1 du, 0 < α < 1

et d’intégrales liées.
1. On pose, pour λ ≥ 0,

φ(λ) =
∫ +∞

0
e−λu eiuuα−1 du.

Montrer que φ définit une fonction continue sur [0,+∞[.
2. Montrer que φ est dérivable sur ]0,+∞[ et vérifie l’équation différen-

tielle φ′(λ) = α
i−λ

φ(λ). En déduire que pour tout λ > 0, on a

φ(λ) = φ(0) 1
(λ2 + 1)α/2 exp(−αi atanλ).

3. Montrer que pour tout λ > 0, on a

φ(0) = (1 + λ−2)α/2 exp(αi atanλ)
∫ +∞

0
e−xei x

λxα−1 dx.

Poser αu = x.
4. En déduire ∫ +∞

0
eiuuα−1 du = exp(iαπ

2
)Γ(α),

en particulier, comme Γ(1/2) =
√
π,∫ +∞

0

cosu√
u

du =
∫ +∞

0

sin u√
u
du =

√
π

2
.

5. Calculer les intégrales de Fresnel∫ +∞

0
cos(u2) du et

∫ +∞

0
sin(u2) du.
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Exercice 53. (*)Calcul de l’intégrale de Dirichlet
Soit a > 0. Montrer que la fonction, f : (x, y) 7→ e−xy sin x, est intégrable sur
[0, a] × [0,+∞[. On pose Ia =

∫
[0,a]×[0,+∞[

f(x, y) dxdy. Déterminer la limite

de Ia quand a tend vers +∞. En déduire la valeur de
∫ +∞

0

sin x
x

dx.

Exercice 54. Rappelons que la fonction Gamma Γ : R∗
+ → R est définie

pour tout x > 0 par Γ(x) =
∫+∞

0 tx−1e−t dt et la fonction Beta β : R∗
+×R∗

+ →
R est définie pour tous x > 0, y > 0 par β(x, y) =

∫ 1
0 t

x−1(1 − t)y−1 dt . Pour
tous x > 0, y > 0, vérifier l’existence de β(x, y) puis montrer que :

β(x, y) = Γ(x) Γ(y)
Γ(x+ y)

.

Exercice 55. Pour x ≥ 0, on pose R(x) =
∫+∞

x
sin u

u
du. Le but de l’exercice

est de démontrer l’identité ∫ +∞

0

R(x)√
x

=
√

2π.

1. Montrer que R(x) est bien défini pour x ≥ 0 et qu’on a en l’infini
R(x) = O(1/x). En déduire que R est bornée. Faire une intégration
par parties.

2. R(x)√
x

est-elle intégrable par rapport à la mesure de Lebesgue sur R+ ?
oui !

3. Pour λ ≥ 0, On pose Rλ(x) =
∫+∞

x
sin u

u
e−λu du.

(a) Justifier l’existence de Rλ(x), puis montrer que pour tout x > 0 et
tout λ > 0, on a

|Rλ(x) −R(x)| ≤ | cos x|1 − e−λx

x
+
∫ +∞

x

Ψ(λu)
u2 du,

où on a posé Ψ(x) = |e−x(1 + x) − 1|. Faire une intégration par
parties.

(b) Montrer qu’il existe M < +∞ telle que Ψ(x) ≤ M pour tout
x ≥ 0. En déduire que pour tout x > 0, limλ→0 Rλ(x) = R(x).
Pour le premier point, noter que Ψ est continue, de limite 1 en
l’infini. Enfin, appliquer le théorème de convergence dominée.

(c) Montrer qu’il existe L > 0 tel que Ψ(x) ≤ Lx2 pour tout x ≥ 0.
Établir les inégalités

∀λ > 0 ∀x ≥ 1 |Rλ(x) −R(x)| ≤ 1 + 2M
x

∀λ > 0 ∀x ≤ 1 |Rλ(x) −R(x)| ≤ λ+ Lλ2 + 2M.

On peut noter que Ψ(x)/x2 est continue sur R∗
+, avec des limites

finies en +∞ et en 0. Pour la dernière inégalité, on pourra écrire∫ +∞

x

Ψ(λu)
u2 du =

∫ 1

x

Ψ(λu)
u2 du+

∫ +∞

1

Ψ(λu)
u2 du.
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(d) Montrer que pour tout λ > 0, Rλ(x)√
x

est intégrable par rapport à la
mesure de Lebesgue sur R+, puis que

∫ +∞

0

R(x)√
x

= lim
λ→0

∫ +∞

0

Rλ(x)√
x
.

Dans un premier temps, dominer |Rλ(x) −R(x)| par une fonction
intégrable. Dans un second temps, pour λ ≤ 1, dominer |Rλ(x) −
R(x)| par une fonction intégrable ne dépendant pas de λ.

4. Montrer que pour tout λ > 0, on a
∫ +∞

0

Rλ(x)√
x

= 2
∫ +∞

0

sin u√
u
e−λu du.

Utiliser le théorème de Fubini.
5. Montrer finalement que

∫ +∞

0

R(x)√
x

=
√

2π.

(On rappelle que
∫+∞

0
sin u√

u
du =

√
π
2 .) On pourra écrire

∫ +∞

0

Rλ(x)√
x

=
∫ 1

0

Rλ(x)√
x

+
∫ +∞

1

Rλ(x)√
x
,

le premier morceau se traite aisément par convergence dominée, le
deuxième nécessite une intégration par parties comme précédemment.

Exercice 56. Calcul de ∑n≥1
1

n2 avec Fubini.
Calculer de deux façons différentes :

J =
∫ 1

−1

∫ 1

−1

1
1 + 2xy + y2 dx dy.

Exercice 57. 1. Soit φ une application de N dans R+ Montrer que l’on
a ∫

Rd
φ(Ent(∥x∥∞)) dλd(x) =

+∞∑
n=0

(
(2n+ 2)d − (2n)d

)
φ(n).

2. Soit α > 0. À quelle condition la fonction x 7→ 1
∥x∥α

2
est elle intégrable

sur le complémentaire de la boule unité ?
3. Montrer que l’application

f : x 7→ x

∥x∥2

réalise un C1 difféomorphisme de {x ∈ Rd; 0 < ∥x∥2 < 1} sur {x ∈
Rd; 1 < ∥x∥2} et que sa différentielle est

h 7→ Dfx.h = ∥x∥2
2h− 2⟨x, h⟩x

∥x∥4
2

.
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4. Soit α > 0. À quelle condition la fonction x 7→ 1
∥x∥α

2
est elle intégrable

sur la boule unité ?

Exercice 58. Montrer que pour tout z ∈ C, (1 + z/n)n tend vers exp(z)
lorsque n tend vers l’infini.

Exercice 59. On note S la boule de R3 centrée en l’origine et de rayon 2,
H− la surface inférieure de frontière paraboloïdique (elliptique) :

H− = {(x, y, z) ∈ R3; 3z ≤ x2 + y2}.

−2 −1 0 1 2 −2

0

2
−2

0

2

Pour toute partie A de R3, on note Az sa tranche de niveau z :

Az = {(x, y) ∈ R2; (x, y, z) ∈ A}.

1. Soit z ∈ R. Montrer que

(S ∩H−)z =


Sz si z < 0
∅ si z > 1
{(x, y) ∈ R2; 3z ≤ x2 + y2 ≤ 4 − z2} si z ∈ [0, 1]

2. Montrer que λ⊗3(S ∩H−) = 15
2 π.

3. Le centre de gravité d’un solide homogène représenté par le borélien
borné A est le point

1
λ(A)

∫
A

(x, y, z) dλ⊗3(x, y, z).

Montrer que le centre de gravité de S∩H− est le point de cooordonnées
(0, 0,−13

30).
4. On pose

H+ = {(x, y, z) ∈ R3; 3z > x2 + y2}.

Montrer que le centre de gravité de S∩H+ est le point de cooordonnées
(0, 0, 39

38). Indication : on conseille ne pas refaire tous les calculs, de
remarquer plutôt que le centre de gravité de S est l’origine.
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Chapitre 5

Lois des variables et des
vecteurs aléatoires

Rappel : siX est un espace topologique (par exemple un espace métrique),
on appelle tribu borélienne de X et on note B(X) la tribu engendrée par la
famille des ouverts de X.

5.1 Définition
Si (Ω,F ,P) est un espace probabilisé, on appelle variable aléatoire toute

application mesurable de (Ω,F ,P) dans (R,B(R)), où B(R) est la tribu bo-
rélienne de R. De même, on appelle vecteur aléatoire toute application me-
surable de (Ω,F ,P) dans (Rd,B(Rd)), où B(Rd) est la tribu borélienne de
Rd.

On appelle loi d’une variable aléatoire X definie sur (Ω,F ,P) la loi image
de P par X. Cette loi est notée PX Rappelons que cette loi image est une
mesure de probabilité sur (R,B(R)) définie par

∀A ∈ B(R) PX(A) = P(X−1(A))

Par définition, X−1(A) = {ω ∈ Ω;X(ω) ∈ A}. Afin de simplifier les écri-
tures, on écrit toujours {X ∈ A} à la place de X−1(A). Ainsi, on écrira le
plus souvent P({X ∈ A}) et même P(X ∈ A) pour désigner PX(A).

Exemple : Soit P la mesure sur (R,B(R)) définie par P = 1
3δ−1+ 1

2δ0+ 1
6δ1.

P est une mesure positive, de masse totale 1 : c’est donc une probabilité.
Considérons l’application X : R → R définie par ∀ω ∈ R X(ω) = |ω|.
Comme X est une application mesurable, X est une variable aléatoire. Pour
P-presque tout ω,X(ω) ∈ {0, 1}. Ainsi, la loi de X sous P est

PX = P(X = 0)δ0 + P(X = 1)δ
= P({0})δ0 + P({−1, 1})δ1

= 1
2
δ0 + 1

2
δ1

Exemple : L’exemple qui suit ne paie pas de mine mais est cependant
très instructif. Soit P la mesure sur (R,B(R)) définie par P = 1

3δ−1+ 1
2δ0+ 1

6δ1.
On a vu que P était une probabilité. Considérons l’application Y : R → R
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définie par ∀ω ∈ R Y (ω) = ω. Comme Y est une application mesurable
( !), Y est une variable aléatoire. Il est facile de voir que la loi de Y sous P
est tout simplement P. Ainsi, on voit que le problème de l’existence d’une
variable aléatoire suivant une certaine loi se ramène à celui de l’existence de
cette loi et relève donc des théories de la mesure.

5.1.1 Fonction de répartition
Soit X un vecteur aléatoire à valeurs dans Rd. On appelle fonction de

répartition de X et on note FX la fonction définie sur Rd par

∀t = (t1, . . . , td) ∈ Rd FX(t) = PX(] − ∞, t1]×] − ∞, t2]×] − ∞, td])
= P(X1 ≤ t1, X2 ≤ t2 . . . , Xd ≤ td)

Théorème 52. Si deux variables (ou vecteurs) aléatoires ont la même fonc-
tion de répartition,alors elles ont même loi.

Démonstration. Si X et Y sont tels que FX = FY , cela veut dire que PX et
PY coincident sur les ensembles de la forme ] − ∞, t1]×] − ∞, t2]×] − ∞, td].
Or ces ensembles forment un π-système qui engendre B(Rd), donc PX et PY

sont égales.

C’est surtout en dimension 1 que la fonction de répartition est utile, car
en dimension supérieure, ses propriétés sont plus difficiles à exprimer et les
calculs sont souvent compliqués, voire infaisables. Nous allons juste nous
contenter de donner quelques propriétés de la fonction caractéristique d’une
variable aléatoire.

Propriétés de la fonction de répartition d’une variable aléatoire
réelle

Théorème 53. La fonction de répartition FX d’une variable aléatoire vérifie
les propriétés suivantes

— FX est à valeurs dans [0, 1]
— FX est croissante sur R.
— lim

t→−∞
FX(t) = 0.

— lim
t→+∞

FX(t) = 1.
— En tout point, FX est continue à droite.
— En tout point, FX admet une limite à gauche.

Démonstration. — Le premier point découle du fait que FX(t) est la
probabilité d’un événement.

— Si s ≤ t, on a ] − ∞, s] ⊂] − ∞, t], d’où

FX(s) = P(] − ∞, s]) ≤ P(] − ∞, t]) = FX(t).

— Posons pour n ≥ 1, An =] − ∞,−n], on a An+1 ⊂ An et ∩
n≥1

An = ∅,

d’où lim
n→+∞

PX(An) = PX(∅) = 0. Soit ε > 0 : d’après ce qui précède,
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il existe n tel que PX(An) < ε. Comme FX est croissante et positive,
on a

t ≤ −n =⇒ 0 ≤ FX(t) ≤ FX(−n) ≤ ε,

ce qui prouve que lim
t→−∞

FX(t) = 0.

— Posons pour n ≥ 1, An =] − ∞, n], on a An ⊂ An+1 et ∪
n≥1

An = R,

d’où lim
n→+∞

PX(An) = PX(R) = 1. Soit ε > 0 : d’après ce qui précède,

il existe n tel que PX(An) ≥ 1−ε. Comme FX est croissante et majorée
par 1, on a

t ≥ n =⇒ 1 ≥ FX(t) ≥ FX(n) ≥ 1 − ε,

ce qui prouve que lim
t→+∞

FX(t) = 1.

— Soit t ∈ R, (tn)n≥1 une suite décroissante convergeant vers t. Posons
pour n ≥ 1, An =]−∞, tn], on a An+1 ⊂ An et ∩

n≥1
An =]−∞, t], d’où

lim
n→+∞

FX(tn) = lim
n→+∞

PX(An) = PX(] − ∞, t]) = FX(t). Comme
cette égalité est obtenue pour toute suite décroissante convergeant vers
t, ceci prouve que la limite à droite de FX au point t est FX(t) (cri-
tère de continuité séquentiel). Remarquons qu’on aurait pu également
utiliser des critères analogues pour les preuves des deux propriétés
précédentes et éviter ainsi l’emploi de ε.

— Toute fonction croissante admet une limite à gauche en tout point de
l’intérieur de l’ensemble de définition.

5.1.2 Tribu engendrée par une ou plusieurs variables
aléatoires

Soit (Ω,F ,P) un espace probabilisé, X une variable aléatoire (ou un vec-
teur aléatoire) sur cette espace. On note

σ(X) = {X−1(A);A ∈ B(R)}.

Cette famille est une tribu. On dit que c’est la tribu engendrée par une
variable aléatoire X.

De la même manière, on appelle tribu engendrée par une famille de va-
riables (Xi)i∈I et on note σ((Xi)i∈I) la tribu

σ(σ(Xi), i ∈ I).

Exemple : Soient X et Y deux variables aléatoires à valeurs dans N.
Alors, l’événement {X = Y } est σ(X, Y )-mesurable.
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Démonstration. On a

{X = Y } = ∪
k∈N

{X = Y } ∩ {X = k}

= ∪
k∈N

{X = k} ∩ {Y = k}

Par définition de σ(X), l’événement {X = k} est σ(X)-mesurable. Comme
σ(X, Y ) contient σ(X), l’événement {X = k} est σ(X, Y )-mesurable. De
même, l’événement {Y = k} est σ(X, Y )-mesurable. Comme σ(X, Y ) est une
tribu, on en conclut que pour tout k, l’événement {X = k} ∩ {Y = k} est
σ(X, Y )-mesurable, puis que l’événement {X = Y } est σ(X,Y )-mesurable.

5.2 Indépendance des variables aléatoires
Définition : On dit que des variables aléatoires (Xi)i∈I sont indépen-

dantes si les tribus (σ(Xi))i∈Iqu’elles engendrent sont indépendantes.
Exemple : Si X et Y sont deux variables aléatoires indépendantes, alors

pour tout couple de boréliens A et B, on a

P({X ∈ A} ∩ {Y ∈ B} = P(X ∈ A)P(Y ∈ B).

Théorème 54. Soient (Xi)i∈I une collection de vecteurs aléatoires aléatoires
indépendants. On suppose que Xi est à valeurs dans Rni. Soient (fi)i∈I une
famille d’applications telles que pour tout i, fi soit une application mesurable
de Rni dans Rpi. Alors, si on pose Yi = fi(Xi) les variables aléatoires (Yi)i∈I

sont indépendantes.

Démonstration. L’indépendance des variables aléatoires est en fait l’indé-
pendance des tribus engendrées. Soit B ∈ B(Rpi) un borélien. On a {Yi ∈
B} = {Xi ∈ f−1

i (B)}. Comme fi est borélienne, f−1
i (B) ∈ B(Rni), et donc

{Yi ∈ B} est σ(Xi)-mesurable. Ceci prouve que σ(Yi) est une sous-tribu
de σ(Xi). Comme les tribus (σ(Xi))i∈I sont indépendantes, leur sous-tribus
(σ(Yi))i∈I le sont aussi.

Exemple : Si X, Y et Z sont indépendantes, alors chX, Y 2 et Z3 sont
indépendantes.

Là, nous restons un peu sur notre faim. En effet, nous voudrions pouvoir
dire aussi que chX + Y 2 est indépendante de Z3. Pour cela, il faudrait que
nous sachions que (X, Y ) est indépendant de Z, auquel cas nous pourrions
appliquer les fonctions f(x, y) = ch x+ y2 et g(z) = z3.

Par chance ( !), ceci est vrai. En effet, on a le résultat suivant :

Théorème 55. Soient (Ai)i∈I une famille de sous-tribus de (Ω,F) indépen-
dantes sous P. Soient J ⊂ I et K ⊂ I disjoints.

Alors les tribus σ(Aj, j ∈ J) et σ(Ak, k ∈ K) sont indépendantes.

Démonstration. On considère le π-système C défini par

C = ∪
F ⊆J

{ ∩
x∈F

Ax; ∀x ∈ F Ax ∈ Ax}.
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ainsi que le π-système D défini par

D = ∪
F ⊆K

{ ∩
x∈F

Ax; ∀x ∈ F Ax ∈ Ax}.

Si B1 ∈ C, B2 peut s’écrire sous la forme B1 = ∩
x∈F

Ax où F ⊆ J et
où ∀x ∈ F Ax ∈ Ax. De même, si B2 ∈ D, B2 peut s’écrire sous la forme
B2 = ∩

x∈F ′
Ax où F ′ ⊆ J et où ∀x ∈ F Ax ∈ Ax. Ainsi

P(B1 ∩B2) = P( ∩
x∈(F ∪F ′)

Ax)

=
∏

x∈(F ∪F ′)
P(Ax)

=
( ∏

x∈F
P(Ax)

)( ∏
x∈F ′

P(Ax)
)

= P(B1)P(B2)

Comme C est un π-système qui engendre σ(Aj, j ∈ J) et D un π-système
qui engendre σ(Aj, j ∈ K), le théorème 25 permet de conclure.

Théorème 56. Soit (Ω,F ,P) un espace probabilisé et X1, . . . , Xn n vecteurs
aléatoires. Les deux propositions suivantes sont équivalentes

1. X1, . . . , Xn sont indépendantes.

2. PX1,...,Xn = PX1 ⊗ · · · ⊗ PXn

Démonstration. — Preuve de 1 =⇒ 2. On pose C =
n∏

i=1
B(Rni). Soit

A = A1 × · · · × An ∈ C. On a

PX1,...,Xn(A) = P((X1, . . . , Xn) ∈ A)

= P(
n
∩

i=1
{Xi ∈ Ai})

=
n∏

i=1
P(Xi ∈ Ai)

=
n∏

i=1
PXi

(Ai)

= (PX1 ⊗ · · · ⊗ PXn)(A)

Ainsi PX1,...,Xn et PX1 ⊗ · · · ⊗ PXn coïncident sur un π-système qui

engendre
n
⊗
i=1

B(Rni). Il s’ensuit que ces deux mesures sont égales.
— Preuve de 2 =⇒ 1 Soient B1, . . . Bn quelconques tels que pour tout i

Bi soit σ(Xi)-mesurable : alors, pour tout i, il existe un borélien Ai
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tel que Bi = {Xi ∈ Ai}. On pose A = A1 × · · · × An ∈ C.

P(
n
∩

i=1
Bi) = P(

n
∩

i=1
{Xi ∈ Ai})

= PX1,...,Xn(A)
= (PX1 ⊗ · · · ⊗ PXn)(A)

=
n∏

i=1
PXi

(Ai)

=
n∏

i=1
P(Xi ∈ Ai)

=
n∏

i=1
P(Bi),

ce qui prouve l’indépendance des tribus.

Corollaire 9. Soit (Ω,F ,P) un espace probabilisé et X1, . . . , Xn n vecteurs
aléatoires. On suppose qu’il existe des mesures de probabilités µ1, . . . , µn telles
que PX1,...,Xn = µ1 ⊗ · · · ⊗ µn. Alors

1. X1, . . . , Xn sont indépendantes.
2. Pour tout i, la loi de Xi sous P est µi. (PXi

= µi)

Démonstration. Soit B un borélien.

PXi
(B) = P(Xi ∈ B)

= P((X1, . . . , Xn) ∈ Ω × · · · × Ω ×B × Ω . . .Ω)
= P(X1,...,Xn)(Ω × · · · × Ω ×B × Ω . . .Ω)
= (µ1 ⊗ · · · ⊗ µn)(Ω × · · · × Ω ×B × Ω . . .Ω)
= µ1(Ω) × · · · × µi−1(Ω) × µi(B) × µi+1(Ω) . . . µn(Ω)
= µi(B)

Ainsi PXi
= µi. L’identité PX1,...,Xn = µ1⊗· · ·⊗µn. peut se réécrire PX1,...,Xn =

PX1 ⊗ · · · ⊗ PXn et il suffit alors d’appliquer le théorème précédent.

5.2.1 Application : loi 0 − 1 de Kolmogorov
Théorème 57. Soit S un ensemble infini et (Ai)i∈S une famille de tribus
indépendantes sous la loi P. On pose

T = ∩
Λ⊆S

σ(Ak; k ∈ S\Λ).

T est appelée tribu de queue de la famille (Ai)i∈Λ. Alors

∀A ∈ T P(A) ∈ {0, 1}.

Démonstration. Posons

A = ∪
Λ⊆S

σ(Ak; k ∈ Λ).
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Il n’est pas très difficile de voir que A est une algèbre. Montrons que l’algèbre
A est indépendante de la tribu T . Soit A ∈ A et B ∈ Q. Il existe Λ ⊂ S avec
Λ fini tel que A ∈ σ(Ak; k ∈ Λ). Or, par définition de Q, B ∈ σ(Ak; k ∈ Λc).
Or, d’après le théorème 55, les tribus σ(Ak; k ∈ Λ) et σ(Ak; k ∈ Λc) sont
indépendantes, donc P(A ∩B) = P(A)P(B).

Ainsi A est indépendante de T . Comme A est une algèbre, le théorème 25
assure que σ(A) est indépendante de T . Or T ⊂ σ(A), donc T est indépen-
dante d’elle même. Soit donc A ∈ T : on a

0 = P(∅) = P(A ∩ Ac) = P(A)P(Ac) = P(A)(1 − P(A)),

donc P(A) ∈ {0, 1}.

5.2.2 Variables aléatoires indépendantes et convolu-
tions

Théorème 58. Si deux variables aléatoires X et Y sont indépendantes sous
P, alors PX ∗ PY = PX+Y .

Démonstration. Si X et Y sont indépendantes, alors P(X,Y ) = PX ⊗ PY .
PX ∗ PY est donc la loi image de P(X,Y ) par (x, y) 7→ x+ y. Mais la loi image
de P(X,Y ) par (x, y) 7→ x+ y, ce n’est rien d’autre que PX+Y .

Théorème 59. Soit µ, ν et χ trois mesures finies sur (Rd,B(Rd)). On a

µ ∗ ν = ν ∗ µ

et
(µ ∗ ν) ∗ χ = µ ∗ (ν ∗ χ).

Démonstration. Si une des trois mesures de la deuxième formule est nulle,
chacun des produits est nulle car la mesure nulle est absorbante pour le pro-
duit de convolution. Idem pour la première formule si l’une des deux est nulle
Sinon, posons Notons P = ν

ν(Rd) ⊗ µ
µ(Rd) ⊗ χ

χ(Rd) . P est une mesure de probabi-
lité. X,Y , Z Définissons sur (Rd)3 : X(x, y, z) = x;Y (x, y, z) = y;Z(x, y, z) =
z, S = X + Y ;T = Y + Z. D’après l’associativité de l’indépendance, X et T
sont indépendantes, de même S et Z sont indépendantes. On a donc

PX ∗ PT = PX+T = PS+Z = PS ∗ PZ .

Maintenant, il est facile de voir que PT = 1
ν(Rd)χ(Rd)ν ∗ χ et que PS =

1
µ(Rd)ν(Rd)µ ∗ ν, d’où (µ ∗ ν) ∗ χ = µ ∗ (ν ∗ χ). De même PX ∗ PY = PX+Y =
PY +X = PY ∗ PX permet de montrer la première formule.

Ainsi l’ensemble des mesures finies munies de (+,*) forme un anneau
commutatif.
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5.3 Variables aléatoires discrètes
On dit qu’une loi µ est discrète s’il existe un ensemble D fini ou dénom-

brable inclus dans Rd tel que µ(D) = 1.
De même, on dit qu’une variable aléatoire X définie sur un espace pro-

babilisé (Ω,F ,P) est discrète si sa loi PX est discrète.
Ainsi, si D est un ensemble dénombrable tel que P(X ∈ D) = PX(D) = 1

et l’on pose
∀i ∈ D pi = P(X = i)

La famille (pi)i∈D est une famille de réels positifs vérifiant∑
i∈D

pi = 1.

La connaissance de D et des pi permet de reconstituer la loi de X. En
effet, on a le théorème suivant :
Théorème 60. Soit X une variable aléatoire discrète, et D un ensemble D
fini ou dénombrable inclus dans R tel que X(Ω) = D. Pour i ∈ D, on pose
pi = P(X = i). Alors,

1. pour tout A ∈ B(R), on a

PX(A) =
∑

i∈D∩A
pi.

2. PX =
∑

i∈D
piδi.

3. PX admet comme densité par rapport à la mesure de comptage sur D
la fonction f(x) définie par

f(x) =

px si x ∈ D

0 si x /∈ D

Démonstration. On note m la mesure de comptage sur D Soit A un borélien.
{X ∈ A∩D} est réunion dénombrable disjointe des événements {X = i}, où
i décrit A ∩D. On peut donc écrire

PX(A) = P(X ∈ A)
= P(X ∈ A\D) + P(X ∈ A ∩D)
= 0 + P(X ∈ A ∩D)

=
∑

i∈A∩D
P(X = i)

=
∑

i∈A∩D
pi

Posons µ =
∑

i∈D
piδi.

µ(A) =
∑

i∈D
piδi(A)

=
∑

i∈D
pi11A(i)



5.3. VARIABLES ALÉATOIRES DISCRÈTES 73

On a d’une part

µ(A) =
∑

i∈D
pi11A(i)

=
∑

i∈D∩A
pi11A(i) +

∑
i∈D\A

pi11A(i)

=
∑

i∈D∩A
pi + 0

Comme A est quelconque, on en déduit que µ = PX . D’autre part

µ(A) =
∑

i∈D
pi11A(i)

=
∫
D
pi11A(i) dm(i)

=
∫
R
f(i)11A(i) dm(i)

=
∫
A
f(x) dm(x),

ce qui signifie que µ (c’est à dire PX) admet f comme densité par rapport à
la mesure de comptage.

On a la réciproque suivante :

Théorème 61. Soit D un ensemble fini ou dénombrable, (pi)i∈D une famille
de réels positifs vérifiant ∑

i∈D

pi = 1.

Alors, on peut construire un espace probabilisé (Ω,F ,P) et une variable aléa-
toire X sur cet espace telle que

∀i ∈ D pi = P(X = i)

Démonstration. Comme on l’a déjà remarqué, le problème d’existence d’une
variable aléatoire se ramène souvent à l’existence d’une loi. Ici,on peut prendre
Ω = D, F = P(Ω) et X(ω) = ω avec

P =
∑

i∈D
piδi.

5.3.1 Fonction d’une variable aléatoire discrète
Théorème 62. La loi image µf d’une loi discrète µ par une application
mesurable f est une loi discrète.
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Démonstration. Soit D un ensemble fini ou dénombrable tel que µ(D) = 1.
f(D) est un ensemble fini ou dénombrable. Il est donc mesurable par rapport
à la mesure de Lebesgue. On a µf (f(D)) = µ(f−1(f(D)) ≥ µ(D) = 1 car
f−1(f(D) ⊃ D. Il s’ensuit que f(D) est un ensemble fini ou dénombrable
dont la mesure sous µf est 1.

Corollaire 10. Soit X une variable aléatoire discrète définie sur un espace
probabilisé (Ω,F ,P) et f une fonction quelconque définie sur X(Ω). Alors,
la fonction Y définie par

∀ω ∈ Ω Y = f(X(ω))

est une variable aléatoire discrète sur (Ω,F ,P).

De manière plus concise, on écrit Y = f(X).
Exemple : Soit X une variable aléatoire vérifiant X(Ω) = {−1; 0; 1},

avec P(X = −1) = P(X = 0) = P(X = 1) = 1
3 .

On pose Y = X2.
On a Y (Ω) = {0; 1}, avec

{Y = 0} = {X = 0}

et
{Y = 1} = {X = 1} ∪ {X = −1},

d’où
P(Y = 0) = P(X = 0) = 1

3
et

P(Y = 1) = P(X = 1) + P(X = −1) = 1
3

+ 1
3

= 2
3
.

5.4 Variables et vecteurs aléatoires à densité
On dit qu’une loi µ est à densité (sous-entendu par rapport à la mesure

de Lebesgue) s’il existe une fonction mesurable f qui soit une densité de µ
par rapport à la mesure de Lebesgue.

Ainsi, si f est une densité de la loi µ, on a pour tout borélien A

µ(A) =
∫

A
f(ω)dλ(ω).

Exercice : Montrer que si f est la densité d’une loi, alors λ(f < 0) = 0.
Évidemment, si f est la densité d’une loi, on a

1 = µ(Rd) =
∫
Rd
f(ω)dλ(ω).

Réciproquement, si f est une fonction mesurable, positive λ presque par-
tout et d’intégrale 1, µ = f.λ est une mesure de probabilité admettant f
pour densité.

Ainsi, on dit qu’une variable (ou un vecteur) aléatoire X est à densité si
sa loi PX est à densité.
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5.4.1 Premières propriétés
Soit X une variable aléatoire de densité f . f a les propriétés suivantes :
— ∀a, b ∈ R a ≤ b =⇒ P(a ≤ X ≤ b) = P(a ≤ X < b) = P(a < X ≤

b) = P(a < X < b) =
∫

[a,b] f(x) dλ(x).
— ∀a ∈ R P(a ≤ X) = P(a < X) =

∫
[a,+∞[ f(x) dλ(x).

— ∀a ∈ R P(a ≥ X) = P(a > X) =
∫

]−∞,a] f(x) dλ(x).
—

∫
R f(x) dλ(x) = 1.

Remarquons que pour montrer qu’une fonction f positive est une densité
de la variable aléatoire X, il suffit de montrer que pour tout t réel, on a

FX(t) =
∫

]−∞,t]
f(x) dλ(x).

En effet, en faisant tendre t vers l’infini, on obtient que 1 =
∫
R f(x) dλ(x),

et donc f est la densité d’une variable aléatoire Y . Mais X et Y ont même
fonction de répartition, donc même loi, f est la densité de la loi de Y , c’est
donc aussi la densité de la loi de X.

5.4.2 Densités et lois marginales
Théorème 63. Soit (Ω,F , µ) et (Ω′,F ′, µ′) deux espaces mesurés. On sup-
pose que la loi ν sur (Ω × Ω′,F ⊗ F ′) admet une densité h par rapport à
µ⊗ µ′. Alors la loi image νπ de ν par l’application

π : Ω × Ω′ → Ω
(x, x′) 7→ x

admet comme densité par rapport à µ la fonction f définie par f(x) =∫
Ω′ h(x, x′)dµ′(x′).

Démonstration. Soit B ∈ F

νπ(B) = ν(π−1(B))
= ν(B × Ω′)

=
∫

B×Ω′
dν(x, x′)

=
∫

B×Ω′
h(x, x′)d(µ⊗ µ′)(x, x′)

=
∫

B
(
∫

Ω′
h(x, x′)dµ′(x′))dµ(x)

=
∫

B
f(x)dµ(x),

ce qui prouve le résultat.

Théorème 64. Soit X un vecteur aléatoire à valeurs dans Rn et Y un vecteur
aléatoire à valeurs dans Rp définis sur le même espace probabilisé (Ω,F ,P).
Si h(x, y) est une densité de (X, Y ) par rapport à la mesure de Lebesgue sur
Rn+p, alors X admet la densité f(x) =

∫
Rp h(x, y)dλp(y), tandis que

Y admet la densité g(y) =
∫
Rn h(x, y)dλn(x).
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Démonstration. Le diagramme commutatif ci-dessous traduit que
X = π ◦ (X, Y ).

(Ω,F ,P)
(X,Y )
−→ (Rn × Rp,B(Rn) ⊗ B(Rp),P(X,Y ))
X ↘ ↓ π

(Rn,B(Rn),PX)

Il s’ensuit que PX est la mesure image de P(X,Y ) par π. Comme h(x, y)
est la densité de (X,Y ) par rapport à λn ⊗ λp = λn+p, la densité de X est
bien f(x) =

∫
Rp h(x, y)dλp(y), On procède de même pour calculer la densité

de Y .

5.4.3 Indépendance et densités
Théorème 65. Soit X un vecteur aléatoire à valeurs dans Rn et Y un vecteur
aléatoire à valeurs dans Rp définis sur le même espace probabilisé (Ω,F ,P).
On suppose que X admet une densité f et Y une densité g. Si X et Y sont
indépendants, alors le vecteur aléatoire (X, Y ) admet la fonction h(x, y) =
f(x)g(y) comme densité.

Démonstration. Comme X et Y sont indépendantes, sous P, on a PX,Y =
PX ⊗ PY . Ainsi

PX,Y = PX ⊗ PY

= fλn ⊗ gλp

= ((x, y) 7→ f(x)g(y))λn ⊗ λp

= hλn+p,

ce qui montre bien que (la loi de) (X,Y ) admet h comme densité.

Théorème 66. Soit X un vecteur aléatoire à valeurs dans Rn et Y un
vecteur aléatoire à valeurs dans Rp définis sur le même espace probabilisé
(Ω,F ,P). On suppose que (X,Y ) admet une densité h1 qui s’écrive sous la
forme h1(x, y) = f1(x)g1(y), où f et g sont des fonctions positives. Alors, X
et Y sont indépendantes ; X admet comme densité par rapport à la mesure
de Lebesgue sur Rn la fonction

f(x) = f1(x)∫
Rn f1(x′) dλn(x′)

et Y admet comme densité par rapport à la mesure de Lebesgue sur Rp la
fonction

g(y) = g1(y)∫
Rp g1(y′) dλp(y′)

Démonstration. PosonsA =
∫
Rn f1(x)dλn(x) etB =

∫
Rp g1(y)d(λp)(y). Comme
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f1 et f2 sont positives, on a A ≥ 0 et B ≥ 0. Comme h est une densité, on a

1 =
∫
Rn×Rp

h(x, y)d(λn ⊗ λp)(x, y)

=
∫
Rn×Rp

f1(x)g1(y)d(λn ⊗ λp)(x, y)

= (
∫
Rn
f1(x)dλn(x))(

∫
Rp
g1(y)d(λp)(y))

= AB

On en peut donc dire que A et B sont tous deux strictement positifs. Ainsi les
fonctions f et g sont bien définies. Elles sont positives, et, par construction,
chacune d’entre elle admet 1 comme intégrale par rapport à la mesure de
Lebesgue. Ainsi µ = fλn et ν = gλp sont des mesures de probabilité.

Comme dans le théorème précédent, la densité de µ ⊗ ν = est h(x, y) =
f(x)g(y). Donc h(x, y) = f(x)g(y) = f1(x)

A
g1(y)

B
= f1(x)g1(y)

AB
= h1(x, y).

On en déduit P(X,Y ) = µ⊗ ν.
Il suffit d’appliquer le corollaire 9 pour conclure.

5.5 Variables et lois discrètes classiques

5.5.1 Indicatrice d’un événement
On rappelle que pour A ⊂ Ω, l’application 11A (appelée indicatrice de A)

est définie sur Ω par

11A(x) =
{

1 si x ∈ A
0 si x /∈ A

1A est une variable aléatoire à valeurs dans {0; 1}.

5.5.2 Masse de Dirac
On appelle masse de Dirac en un point x ∈ Ω la mesure δx définie par

δx(A) =
{

1 si x ∈ A
0 si x /∈ A

C’est bien une loi car elle est positive et δx(Ω) = 1.
Remarque : Si Ω est un groupe abélien δx+y = δx ∗ δy = δy ∗ δx.

5.5.3 Loi de Bernoulli
On appelle loi de Bernoulli de paramètre p la loi µ = (1 − p)δ0 + pδ1.
Ainsi, on dit qu’une variable aléatoire X suit la loi de Bernoulli de para-

mètre p si on a P(X = 1) = p et P(X = 0) = 1 − p.
Remarques importantes :
— Pour tout évènement A, 11A suit la loi de Bernoulli de paramètre P(A).
— Réciproquement, si une variable aléatoire X suit une loi de Bernoulli,

elle vérifie X = 11X=1.(Réfléchir un peu...)
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Ainsi les variables aléatoires qui suivent des lois de Bernoulli sont exactement
les indicatrices d’événements.

5.5.4 Loi uniforme sur un ensemble
Soit E ⊂ Ω un ensemble fini. On appelle loi uniforme sur E la loi définie

sur P(Ω) par

P(Ω) → [0, 1]

A 7→ |A ∩ E|
|E|

Ainsi, une variable aléatoire X suit la loi uniforme sur E si l’on a

∀x ∈ E P(X = x) = 1
|E|

.

Exemple : La variable aléatoire X représentant le résultat du lancer
d’un dé non truqué suit la loi uniforme sur l’ensemble {1, 2, 3, 4, 5, 6}.

5.5.5 Loi binomiale
On appelle loi binomiale de paramètres n et p et on note B(n, p) la loi de

la somme de n variables de Bernoulli indépendantes de même probabilité p.
Ainsi B(n, p) = (Ber(p))∗n.

Théorème 67. B(n, p) charge les entiers {0, . . . , n}. Plus précisément, on a

∀k ∈ {0, . . . , n} B(n, p)({k}) =
(
n

k

)
pk(1 − p)n−k.

Démonstration. Posons µ = B(n, p). On a

µ = (Ber(p))∗n

= ((1 − p)δ0 + (pδ1)∗n

Comme l’ensemble des mesures positives munie de (+,*) est un anneau com-
mutatif, la formule du binôme de Newton s’applique et l’on a

µ = ((1 − p)δ0 + pδ1)∗n

=
n∑

k=0

(
n

k

)
((1 − p)δ0)∗(n−k) ∗ (pδ1)∗k

=
n∑

k=0

(
n

k

)
((1 − p)n−k(δ0)∗(n−k)) ∗ (pk(δ1)∗k)

=
n∑

k=0

(
n

k

)
pk(1 − p)n−kδ

∗(n−k)
0 ∗ δ∗k

1

=
n∑

k=0

(
n

k

)
pk(1 − p)n−kδ0 ∗ δk

=
n∑

k=0

(
n

k

)
pk(1 − p)n−kδk
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Corollaire 11. Soit A1, . . . , An n événements indépendants de même proba-
bilité p. On pose

X =
n∑

k=1
11Ak

.

Alors X suit la loi binomiale de paramètres n et p .

Remarque : X est le nombre de Ak qui sont réalisés.
Exemple : On lance n fois une pièce de monnaie équilibrée. Le nombre

X de "pile" obtenus suit une loi binomiale de paramètres n et 1
2 .

5.5.6 Loi géométrique
On dit qu’une variable aléatoire X suit la loi géométrique de paramètre

p si l’on a
∀k ∈ N∗ P(X = k) = p(1 − p)k−1.

Théorème 68. Soit (Ai)i∈N∗ une suite d’événements indépendants de même
probabilité p > 0. On pose

X(ω) = inf{k ∈ N∗ ω ∈ Ak}.

Alors X suit la loi géométrique de paramètre p . De plus

∀k ∈ N FX(k) = 1 − (1 − p)k.

Démonstration.
{X > k} = ∩

i∈{1,...,k}
Ac

i .

Comme les Ai sont dans F , les Ac
i le sont aussi, et donc comme on peut

l’écrire comme intersection finie d’éléments de F ,{X > k} est dans F , et
donc, par passage au complémentaire

{X ≤ k} ∈ F .

En utilisant l’indépendance des (Ai), on obtient

P(X > k) = (1 − p)k.

Comme
{X = +∞} = ∩

k≥1
{X > k},

on obtient, par continuité séquentielle décroissante

P(X = +∞) = lim
k→+∞

P({X > k}) = lim
k→+∞

(1 − p)k = 0.

Ainsi X est bien une variable aléatoire, et l’on a

∀k ∈ N∗ P(X = k) = P(X > k−1)−P(X > k) = (1−p)k−1−(1−p)k = (1−p)k−1p

De plus

∀k ∈ N FX(k) = P(X ≤ k) = 1 − P(X > k) = 1 − (1 − p)k.

Exemple : On lance une pièce de monnaie équilibrée jusqu’à obtention de
"pile". Le nombre de lancers effectués suit une loi géométrique de paramètre 1

2 .
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5.5.7 Loi de Poisson
On dit qu’une variable aléatoire X suit la loi de Poisson de paramètre

λ > 0 si l’on a
∀k ∈ N P(X = k) = e−λλ

k

k!
.

La construction de telles variables est bien possible car e−λ λk

k! ≥ 0 et
+∞∑
k=0

e−λλ
k

k!
= e−λeλ = 1.

5.5.8 Loi hypergéométrique
La loi hypergéométrique H(N, n, k) modélise le phénomène suivant : on

tire au hasard k individus dans une population de N individus, et l’on compte
le nombre d’individus possédant une certaine particularité, sachant qu’il y
a exactement n personnes dans la population totale qui possédaient cette
particularité.

De manière théorique, la loi hypergéométrique est la loi image de la loi
uniforme sur Ω = B(N, k) par l’application

X : B(N, k) → N
ω 7→ X(ω) = |{1, . . . , n}) ∩ ω|

Ainsi pour i ∈ {0, . . . ,min(n, k)}, on a

H(N,n, k)(i) =

(
n
i

)(
N−n
k−i

)
(

N
k

)
Démonstration. Notons P la loi uniforme sur Ω. On a

H(N,n, k)(i) = P(ω ∈ S),

où S = {ω ∈ B(N, k); |{1, . . . , n} ∩ ω| = i. L’application

B({1, . . . , n}N, i) × B({n+ 1, . . . , N}, k − i) → S

(A,B) 7→ A ∪B

est une bijection, donc

|S| = |B({1, . . . , n}N, i) × B({n+ 1, . . . , N}, k − i)| =
(
n

i

)(
N − n

k − i

)

Comme P est la loi uniforme sur Ω, et que |Ω| =
(

N
k

)
, le résultat s’ensuit.

5.6 Lois à densité usuelles

5.6.1 Loi uniforme sur un compact de Rd

On dit qu’une variable aléatoire X suit la loi uniforme sur un compact K
de Rd si elle admet la densité

x 7→ 1
λ(K)

11K(x)
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5.6.2 Loi uniforme sur un intervalle

On dit qu’une variable aléatoire X suit la loi uniforme sur l’intervalle
[a, b] si elle admet la densité

x 7→ 1
b− a

11[a,b](x)

5.6.3 Loi gaussienne de paramètres m et σ2

Soit m ∈ R et σ2 > 0. On dit qu’une variable aléatoire X suit la loi
gaussienne N (m,σ2) de paramètres m et σ2 si elle admet la densité

x 7→ 1√
2πσ

exp(−(x−m)2

2σ2 ).

On emploie également parfois le mot "normale" à la place de "gaussienne" :
ces deux mots signifient exactement la même chose. gamma On dit qu’une
variable gaussienne est centrée lorsque m = 0.
On dit qu’une variable gaussienne est réduite lorsque σ2 = 1.

Quelques résultats qui seront prouvés ultérieurement : si X ∼ N (m,σ2),
alors aX + b ∼ N (am + b, a2σ2). En particulier, si X ∼ N (m,σ2), alors
X−m

σ
∼ N (0, 1) ; et si X ∼ N (0, 1), alors σX +m ∼ N (m,σ2).

1√
2π

exp(−x2

2 )

Densité de la loi normale N (0, 1)

43210-1-2-3-4

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

5.6.4 Loi exponentielle de paramètres a

Soit a > 0. On dit qu’une variable aléatoire X suit la loi exponentielle de
paramètres a si elle admet la densité

x 7→ a exp(−ax)11R+(x).
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e−x

Densité de la loi exponentielle de paramètre 1

543210

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

5.6.5 Lois de Cauchy
Soient a ∈ R, b > 0. La loi de Cauchy C(a, b) admet comme densité par

rapport à la mesure de Lebesgue :

x 7→ 1
π

b

(x− a)2 + b2 .

1
π

1
1+x2

Densité de la loi de Cauchy C(0, 1)

1.510.50-0.5-1-1.5

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

5.6.6 Lois Gamma
Soient a et λ des réels strictement positifs. On appelle loi Gamma Γ(a, λ)

la loi dont la densité par rapport à la mesure de Lebesgue est
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x 7→ λa

Γ(a)
xa−1e−λx11]0,+∞[(x),

où Γ(a) est la valeur au point a de la fonction Γ, définie par

Γ(a) =
∫
R+
xa−1e−x dx.

On dit parfois que a est le paramètre de forme et λ le paramètre d’échelle
de la loi. En effet, on montrera plus loin que si X ∼ Γ(a, λ), alors pour tout
µ > 0, on a 1

µ
X ∼ Γ(a, λµ).

On rappelle quelques propriétés classiques de la fonction Γ qui seront
utiles dans la suite :

— ∀a > 0 Γ(a+ 1) = aΓ(a).
— ∀n ∈ N Γ(n+ 1) = n!
La preuve de ces deux propriétés sera vue en exercice.

xe−x

Densité de la loi Gamma Γ(2, 1)

543210

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
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5.7 Exercices sur les lois des variables aléa-
toires

Exercice 60. Soit s > 1. On dit que X suit une loi ζ de paramètre si l’on a

∀n ∈ N∗ P(X = n) = 1
ζ(s)

1
ns
,

où l’on a posé

ζ(s) =
+∞∑
n=1

1
ns
.

Soit donc X suivant une loi ζ de paramètre s. On tire Y au hasard – c’est à
dire avec équiprobabilité – entre 1 et X.

1. Pour n, k ∈ N∗, calculer P(Y = k|X = n).
2. On pose Z = Y

X
. Montrer que la fonction de répartition FZ est stric-

tement croissante sur [0, 1].
3. Soient p, q deux entiers positifs premiers entre eux, avec p ≤ q. Cal-

culer P(Z = p
q
).

4. On rappelle que φ(n) désigne le nombre d’entiers entre 1 et n qui sont
premiers avec n. Déduire de ce qui précède une preuve probabiliste de
l’identité

ζ(s+ 1)
+∞∑
n=1

φ(n)
ns+1 = ζ(s).

Exercice 61. Donner un exemple de familles d’événements C et D telles que
— ∀A ∈ C ∀B ∈ D P(A ∩B) = P(A)P(B).
— les tribus σ(C) et σ(D) ne sont pas indépendantes.

Exercice 62. Donner un exemple de deux lois distinctes sur (Ω,F) coïnci-
dant sur un système C engendrant F .

Exercice 63. On choisit de manière uniforme sur [0, 1] un réel Y . Quelle est
la probabilité pour que le polynome

p(x) = x2 + x+ Y

ait des racines réelles ? des racines distinctes ?

Exercice 64. Dans le segment [AB] de longueur 1, on choisit au hasard un
point M . Quelle est la probabilité pour que l’on ait AM.MB ≥ 2

9 ?

Exercice 65. Soient X1, . . . , Xn, . . . des variables aléatoires indépendantes
suivant la loi uniforme sur [0, 1]. On poseMn = max(X1, . . . , Xn). Déterminer
la fonction de répartition de Mn. Montrer que Mn admet une densité que l’on
déterminera.

Exercice 66. Soient X1, . . . , Xn, . . . des variables aléatoires indépendantes
suivant la loi uniforme sur [0, 1]. On pose Mn = max(X1, . . . , Xn) et mn =
min(X1, . . . , Xn). Montrer que Mn et 1 −mn ont même loi.
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Exercice 67. Soit X une variable aléatoire suivant la loi B(2n, 1/2). On
pose Y = |X − n|. Déterminer la loi de Y .

Exercice 68. Soit (X, Y ) un vecteur aléatoire suivant la loi uniforme sur le
rectangle [−1, 2] × [−1, 1]. Montrer que

P(1 − Y ≥ 2|X|) = 1
3
.

Exercice 69. Pour n entier strictement positif, on note An = nN∗. Notons
P l’ensemble des nombres premiers positifs et T la sous-tribu de (N∗,B(N∗))
engendrée par les (Ap)p∈P . Pour ω ∈ N∗, on pose

F (ω) =
∏

p∈P;d divise ω
p.

1. Montrer que T = σ(X).
2. Déterminer le plus petit ensemble T -mesurable contenant 1980.
3. Montrer que An est T -mesurable si et seulement si n n’est divisible

par aucun carré.
4. On munit (N∗,B(N∗)) de la mesure de probabilité ζ de paramètre s,

c’est à dire que
∀n ∈ N∗ P({n}) = 1

ζ(s)
1
ns
,

où l’on a posé

ζ(s) =
+∞∑
n=1

1
ns
.

Montrer que P(An) = 1
ns . À quelle condition les événements An et Am

sont-ils indépendants sous la loi P ?
5. Soit N = {ω ∈ N∗; Aωest T − mesurable} Montrer que N =

∩
p∈P

Ac
p2 , puis que 0 < P(N ).

Exercice 70. 1. Soit (An)n≥1 une suite de tribus indépendantes. Mon-
trer que la tribu Q =

+∞
∩

k=1
σ(Ai; i ≥ k) est triviale.

2. Soit (An)n≥1 une suite d’événements indépendants. Soit A l’événement
“ une infinité de Ai se produisent. Montrer que P(A) ne peut valoir
que 0 ou 1

Exercice 71. Démontrer les propriétés de la fonction Γ laissées en exercice :
— ∀a > 0 Γ(a+ 1) = aΓ(a).
— ∀n ∈ N Γ(n+ 1) = n!

Exercice 72.
Queue de la gaussienne
Soit X une variable aléatoire suivant la loi normale N (0, 1). On pose Ψ(x) =
P(X > x) = 1 − FX(x). Montrer l”équivalent en l’infini

Ψ(x) ∼ 1√
2π

1
x
e− x2

2 .
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Exercice 73. La tradition veut que l’Épiphanie soit l’occasion de « tirer
les rois » : une fève est cachée dans une galette, découpée entre les convives
et la personne qui obtient cette fève devient le roi de la journée. Lorsque le
premier coup de couteau est porté sur la fève, c’est la consternation ! Qu’elle
est la probabilité de cette malheureuse issue ?
Hypothèses et simplifications : on admet que la galette est circulaire, de rayon
unité, et que la fève est aussi circulaire, le rayon r. Enfin, on suppose que

— la position du centre de la fève suit la loi uniforme sur le disque de
rayon 1 − r ayant le même centre que la galette

— le coup de couteau est un rayon du disque représentant la galette
Application numérique avec une une fève de 2,7 centimètres de diamètre dans
une galette de 23 centimètres de diamètre achetée ce matin.

Exercice 74. Soient (X1, . . . Xn) des variables aléatoires indépendantes telles
que pour tout i entre 1 et n Xi suit la loi exponentielle E(λi). On note
m = inf(X1, . . . , Xn) et N = inf{i ≥ 1;Xi = m}.

1. Montrer que P(∃(i, j) ∈ N2 1 ≤ i < j ≤ n;Xi = Xj) = 0.
2. Montrer que pour tout i entre 1 et n

P(T > t,N = i) = P
(

∩
1≤j≤n

j ̸=i

{t < Xi < Xj}
)

=
∫
Rn

11]t,+∞[(xi)
∏

1≤j≤n
j ̸=i

11]xi,+∞[(xj)
n∏

j=1
λje

−λjxj dλ⊗n(x1, . . . , xn)

3. On pose λ =
n∑

j=1
λj. Montrer que P(T > t,N = i) = λi

λ
exp(−λt).

Appliquer le théorème de Fubini.
4. Montrer que T et N sont indépendantes et préciser leurs lois.

Exercice 75. Soit n un entier naturel. On considère X une variable aléatoire
exponentielle de paramètre 1 et Y une binomiale B(n, 1

2). On suppose que X
et Y sont indépendantes.

Montrer que Z = X
Y +1 est une variable à densité et déterminer sa densité.



Chapitre 6

Espérances et calculs

6.1 Quelques rappels sur la construction de
l’espérance

Définition Si X est une variable aléatoire intégrable définie sur (Ω,F ,P),
on appelle espérance de X et on note EX le réel défini par

EX =
∫

Ω
X(ω) dP(ω).

Remarque : En toute rigueur, il faudrait écrire EPX.
Définition On note L1((Ω,F ,P)) l’ensemble des variables aléatoires inté-
grables sur (Ω,F ,P).
Définition Si X = (X1, . . . , Xn) est un vecteur aléatoire dont toutes les
composantes sont intégrables, on note EX le vecteur (EX1, . . . ,EXn).

6.2 Quelques propriétés
— L1 est un espace vectoriel.
— ∀X,Y ∈ L1 E(X + Y ) = EX + EY .
— ∀X ∈ L1, ∀a ∈ R EaX = aEX.
— ∀A ∈ F E(11A) = P(A).
— La variable aléatoire X est intégrable si et seulement si |X| est inté-

grable.
— ∀X ∈ L1 P(X ≥ 0) = 1 =⇒ EX ≥ 0
— ∀X ∈ L1 P(X ≤ a) = 1 =⇒ EX ≤ a.
— ∀X ∈ L1 P(X ≥ b) = 1 =⇒ EX ≥ b.
— ∀X ∈ L1 P(X = a) = 1 =⇒ EX = a.
— ∀X ∈ L1 P(|X| ≤ a) = 1 =⇒ E|X| ≤ a.
— Soient X, Y deux variables aléatoires vérifiant 0 ≤ X ≤ Y . Si Y est

intégrable, alors X est intégrable.
— ∀X,Y ∈ L1 P(X ≤ Y ) = 1 =⇒ EX ≤ EY .
Vocabulaire : on dit qu’une variable aléatoire X est centrée si EX = 0.

On définit de même ce qu’est un vecteur aléatoire centré.
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6.3 Application : Formule de Poincaré et in-
égalités de Bonferroni

La formule de Poincaré est l’analogue de la formule du même nom du
cours de dénombrement. On peut considérer que c’en est une généralisation.

Théorème 69 (Formule de Poincaré). Pour tous événements A1, A2, ..., An

sous la probabilité P

P
(

n
∪

i=1
Ai

)
=

∑
B∈P({1,...,n})\∅

(−1)1+|B|P(∩j∈BAj) (6.1)

=
n∑

i=1
P(Ai) −

∑
1≤i1<i2≤n

P(Ai1 ∩ Ai2) + · · · (6.2)

· · · + (−1)k+1 ∑
1≤i1<i2<...<ik≤n

P(Ai1 ∩ · · · ∩ Aik
) + · · ·(6.3)

· · · + (−1)n+1P(A1 ∩ · · · ∩ An). (6.4)

Exemple : Pour n = 3, on a

P(A1 ∪ A2 ∪ A3) = P(A1) + P(A2) + P(A3)
−P(A1 ∩ A2) − P(A2 ∩ A3) − P(A1 ∩ A3)
+P(A1 ∩ A2 ∩ A3).

Pour prouver la formule de Poincaré, on va utiliser un lemme qui va nous
permettre d’obtenir des encadrements de la probabilité d’une réunion.

Lemme 4. Soit (Ω,F ,P) un espace probabilisé ; (Ax)x∈I des événements.
Pour n ≥ 1, on pose

Vn = Pn(
∑
x∈I

11Ax − 1)11∪x∈IAx ,

où (Pk)k≥0 est la suile de polynômes définie par

P0 = 1
P1 = X

P2 = X(X−1)
2

. . .

Pk = X(X−1)...(X−k+1)
k!

Ainsi pour n ≥ k Pk(n) =
(

n
k

)
tandis que Pk(n) = 0 pour 0 ≤ n < k.

Alors

∀n ∈ N∗ P( ∪
x∈I

Ax) =
n∑

k=1
(−1)k+1 ∑

J∈Bk(I)
P ( ∩

x∈J
Ax)+(−1)nEVn (6.5)

Démonstration. Il suffit de montrer

∀n ∈ N∗ 11
∪

x∈I
Ax

=
n∑

k=1
(−1)k+1 ∑

J∈Bk(I)

∏
x∈J

11Ax + (−1)nVn (6.6)
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Soit ω ∈ Ω. Si ω /∈ ∪x∈IAx, les deux membres de l’égalité sont nuls. Sinon,
posons N = ∑

x∈I 11Ax(ω) = |{x ∈ I;ω ∈ Ax}|.

On a
∏

x∈J
11Ax = 1 si et seulement si J ⊂ {x ∈ I;ω ∈ Ax}.

Ainsi
∑

J∈Bk(I)

∏
x∈J

11Ax = Pk(N)
On doit donc montrer

1 =
n∑

k=1
(−1)k+1Pk(N) + (−1)nPn(N − 1),

ce qui est équivalent à
n∑

k=0
(−1)kPk(N) = (−1)nPn(N − 1).

Pour conclure, deux preuves possibles :
Méthode 1 : On va montrer par récurrence sur n :

n∑
k=0

(−1)kPk(X) = (−1)nPn(X − 1)

Pour n = 0, c’est vérifié. Pour passer de n à n+ 1, on a

n+1∑
k=0

(−1)kPk(X) =
n∑

k=0
(−1)kPk(X) + (−1)n+1Pn+1(X)

= (−1)nPn(X − 1) + (−1)n+1Pn+1(X)
= (−1)n+1(Pn+1(X) − Pn(X − 1))

= (−1)n+1( 1
n+ 1

XPn(X − 1) − Pn(X − 1))

= (−1)n+1 (X − (n+ 1))Pn(X − 1)
n+ 1

= (−1)n+1Pn+1(X − 1)

Méthode 2 : De manière équivalente, il faut montrer que
n∑

k=0
(−1)n−kPk(N) = Pn(N − 1).

Mais on reconnaît en∑n
k=0(−1)n−kPk(N) le coefficient en xn de la série entière

sur B(0, 1) :

(+∞∑
k=0

Pk(N)xk

)(+∞∑
k=0

(−1)kxk

)

=
(

N∑
k=0

(
N

k

)
xk

)
1

1 + x

= (1 + x)N 1
1 + x

= (1 + x)N−1



90 CHAPITRE 6. ESPÉRANCES ET CALCULS

dont le coefficient en xn est précisément Pn(N − 1), d’où l’identification des
termes.

Ensuite, il suffit d’intégrer (6.6) pour obtenir (6.5).

Démonstration. En prenant I = J = {1, . . . , n} dans le lemme précédent, on
obtient

P( ∪
x∈I

Ax) =
|I|∑

k=1
(−1)k+1 ∑

J∈Bk(I)
P( ∩

x∈J
Ax),

car Vn est identiquement nulle. Cela démontre la formule de Poincaré.

Théorème 70 (Inégalités de Bonferroni). Soit (Ω,F ,P) un espace probabi-
lisé ; (Ax)x∈I des événements. Soit n ∈ N∗.

Alors,
— Si n est impair, on a

P( ∪
x∈I

Ax) ≤
n∑

k=1
(−1)k+1 ∑

J∈Bk(I)
P( ∩

x∈J
Ax) (6.7)

— Si n est pair, on a

P( ∪
x∈I

Ax) ≥
n∑

k=1
(−1)k+1 ∑

J∈Bk(I)
P( ∩

x∈J
Ax) (6.8)

Démonstration. Il suffit d’appliquer le lemme 4 en remarquant que Vn est
une variable aléatoire positive, et que donc son espérance l’est aussi.

6.3.1 Application aux problème des dérangements
On reprend le problème des dérangements, qui avait été étudié en exercice

au chapitre 3 par des méthodes d’algèbre linéaire. On note Ω = Sn l’ensemble
des permutations de I = {1, . . . , n}, que l’on munit de la loi uniforme. On
cherche donc à calculer pn = dn

n! , où dn est le nombre de permutations de Sn

sans point fixe :

dn = Card({σ ∈ Sn; ∀i ∈ 1, . . . , n σ(i) ̸= i}).

(On pose d0 = 1.) Pour i entre 1 et n, posons Ai = {σ(i) = i}. Ce que nous
cherchons, c’est

pn = P(
n
∩

i=1
Ac

i) = 1 − P(
n
∪

i=1
Ai),

d’où, avec la formule de Poincaré

pn = 1 −
n∑

k=1
(−1)k+1 ∑

J∈Bk(I)
P( ∩

x∈J
Ax).

Mais il est facile de déterminer ∩
x∈J

Ax : ce sont les permutations de I qui
fixent les points de J et qui permutent les points de I\J : ce sous-ensemble
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de permutations de Sn est en bijection avec S(I\J) ; il est donc de cardi-
nal (n − k)!, d’où, avec l’hypothèse d’équiprobabilité, P( ∩

x∈J
Ax) = (n−k)!

n! .
Finalement,

pn = 1 −
n∑

k=1
(−1)k+1 ∑

J∈Bk(I)

(n− k)!
n!

= 1 +
n∑

k=1
(−1)k

(
n

k

)
(n− k)!
n!

=
n∑

k=0

(−1)k

k!

6.4 Théorèmes de transfert
Théorème 71. Soit X une variable aléatoire dont la loi PX admet une den-
sité f par rapport à la mesure m. Soit g une fonction mesurable.

Alors, g(X) est intégrable si et seulement si

∫
R

|g(x)|f(x) dm(x) < +∞.

Si cette intégrale est finie, on a alors

E[g(X)] =
∫
R

|g(x)|f(x) dm(x) < +∞.

Démonstration. D’après le théorème de transfert∫
Ω

|g(X(ω))|dP(ω) =
∫
R

|g(x)| dPX(x)

=
∫
R

|g(x)|f(x) dm(x)

De même, si cette quantité est finie, le théorème de transfert nous dit encore
que ∫

Ω
g(X(ω))dP(ω) =

∫
R
g(x) dPX(x)

=
∫
R
g(x)f(x) dm(x)

6.4.1 Calcul de l’espérance d’une variable aléatoire dis-
crète

Théorème 72. Soit X une variable aléatoire discrète, et D un ensemble
fini ou dénombrable inclus dans R tel que X(Ω) = D. Soit g une fonction
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quelconque de D dans R. Alors, la variable aléatoire Y = g(X) est intégrable
si et seulement si ∑

i∈D
|g(i)|pi < +∞,

où l’on a posé pi = P(X = i). Si cette somme est finie, on a alors

EY = Eg(X) =
∑

i∈D
g(i)pi.

Démonstration. D’après nos hypothèses, PX admet une densité par rapport
à la mesure de comptage de support D : c’est la fonction i 7→ pi. Il suffit
donc d’appliquer le théorème 71 en prenant pour m la mesure de comptage
sur D et pour f :

f(x) =

px si x ∈ D

0 si x /∈ D

On a alors ∫
R

|g(x)|f(x) dm(x) =
∑
x∈D

|g(x)|f(x),

et, si cette somme est finie :∫
R
g(x)f(x) dm(x) =

∑
x∈D

g(x)f(x).

Corollaire 12. Soit X une variable aléatoire discrète, et D un ensemble fini
ou dénombrable inclus dans R tel que X(Ω) = D. Alors, X est intégrable si
et seulement si ∑

i∈D
|i|pi < +∞,

où l’on a posé pi = P(X = i). Si cette somme est finie, on a alors

EX =
∑

i∈D
ipi.

Démonstration. Il suffit d’appliquer le thèorème précédent avec g(x) = x.

6.4.2 Calcul de l’espérance d’une variable aléatoire à
densité

Voici maintenant le théorème de transfert pour les variables à densité

Théorème 73. Soit X une variable aléatoire admettant la fonction f comme
densité, et g une fonction continue par morceaux définie sur X(Ω). Alors, la
variable aléatoire Y = g(X) est intégrable si et seulement si

∫
R

|g(x)|f(x) dλ(x) < +∞.

Si cette intégrale est convergente, on a alors

EY = Eg(X) =
∫
R
g(x)f(x) dλ(x).
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Démonstration. Il suffit d’appliquer le théorème 71 avec pour m la mesure
de Lebesgue.
Corollaire 13. Soit X une variable aléatoire admettant la fonction f comme
densité. Alors, X est intégrable si et seulement si∫

R
|x|f(x) dλ(x) < +∞.

Si cette intégrale est convergente, on a alors

EX =
∫
R
xf(x) dx.

Démonstration. Il suffit d’appliquer le thèorème précédent avec g(x) = x.

Remarque importante : Si la densité de X est paire et que X est
intégrable, alors EX = 0.

Démonstration. On a
EX =

∫
R
xf(x) dλ(x),

et avec le théorème de changement de variable,

EX =
∫
R

−xf(−x) dλ(x) =
∫
R

−xf(x) dλ(x),

par parité de f . D’où finalement EX = −EX, c’est à dire EX = 0.

6.5 Convexité

6.5.1 Rappels sur la convexité
On dit qu’une fonction est convexe sur l’intervalle I si pour tous x, y dans

I et θ ∈ [0, 1], on a f(θx+ (1 − θ)y) ≤ θf(x) + (1 − θ)f(y).
Lemme 5. Si x < z < y, alors il existe θ ∈]0, 1[ avec z = θx+ (1 − θ)y.
Démonstration. Facile.
Lemme 6. Les pentes d’une fonction convexe sont croissantes : si h1 < h2
avec x, x+ h1, x+ h2 dans I, avec h1 et h2 non nuls, alors

px(h1) = f(x+ h1) − f(x)
h1

≤ px(h2) = f(x+ h2) − f(x)
h2

.

Si x n’est pas la borne droite (resp. gauche) de I, px admet une limite à droite
en 0 : c’est la dérivée à droite (resp. à gauche) de f en x.
Démonstration. Premier cas : h1 et h2 sont positifs. On applique le lemme
avec z = x + h1 et y = x + h2 et on utilise la définition de la convexité.
Deuxième cas : h1 et h2 sont négatifs. Même chose que dans le cas précédent,
avec x′ = x + h1, z′ = x + h2, y′ = x. Dernier cas : h1 < 0 < h2 dans ce
cas px(h1) ≤ px(max(h1,−h2)) et px(min(h2,−h1)) ≤ ph(h2) d’après ce qui
précède, donc il suffit de vérifier que px(−h) ≤ px(h), ce qui découle immé-
diatement de la convexité. Ceci achève la preuve de la croissance. L’existence
de la limite est une conséquence du théorème sur les fonctions croissantes
minorées à droite pour la limite à droite, et croissantes majorées à gauche
pour la limite à gauche.
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Lemme 7. Soit f convexe avec f(x) = f(y) = 0. f est négative sur [x, y],
positive à l’extérieur.

Démonstration. Si z est entre x et y avec z = θx + (1 − θ)y, alors f(z) ≤
θf(x) + (1 − θ)f(y) ≤ 0. Sinon, l’inégalité

θf(a) + (1 − θ)f(b) ≥ f(θa+ (1 − θ)b)

entraine que si de trois nombres, le terme médian et un autre ont une image
nulle, le troisième doit avoir une image positive.

Lemme 8. On appelle corde portée par x et y la droite passant par (x, f(x))
et (y, f(y)), d’équation ℓ(t) = f(y)−f(x)

y−x
(t − x) + f(x). Si f est une fonction

convexe, la fonction f est en-dessous de la corde entre x et y, au-dessus à
l’extérieur.

Démonstration. Il suffit d’appliquer le lemme précédent à t 7→ f(t)− ℓ(t) qui
est convexe.

Lemme 9. Si f est une fonction convexe et si x n’est pas la borne droite de
I, alors pour tout t dans I, f(t) ≥ f(x) + f ′

d(x)(t− x).

Démonstration. Soit h > 0 Pour tout t qui n’est pas dans ]x, x + h[, la
propriété de la corde donne

f(t) ≥ f(x+ h) − f(x)
h

(t− x) + f(x) ≥ f ′
d(x)(t− x) + f(x),

ce qui est l’inégalité que l’on veut. Mais pour tout t il existe h > 0 tel que t
qui n’est pas dans ]x, x+ h[, d’où le résultat.

Théorème 74. Si f est une fonction dérivable sur l’intervalle ouvert I et
que f ′ est croissante sur I, alors f est convexe sur I.

Démonstration. Soient x, y, z ∈ I, avec x < y. Soit θ ∈]0, 1[. On pose z =
θx+ (1 − θ)y. En appliquant deux fois l’inégalité des accroissements finis, on
a

f(x) − f(z)
x− z

≤ f ′(z) ≤ f(y) − f(z)
y − z

,

en prenant les membres extrêmes, on a

f(x) − f(z)
(1 − θ)(x− y)

≤ f(y) − f(z)
θ(y − x)

.

(f(z) − f(x))θ ≤ (1 − θ)(f(y) − f(z)),

ce qui donne le résultat voulu en réarrrangeant les termes.

6.5.2 Inégalité de Jensen
Théorème 75. Soit X une variable aléatoire intégrable à valeurs dans l’in-
tervalle I. Soit f une fonction convexe de I dans R. Alors

f(EX) ≤ Ef(X).
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Démonstration. Soit Φ l’ensemble des fonctions affines φ telles que

∀x ∈ I φ(x) ≤ f(x).

Soit φ ∈ Φ. On a presque sûrement

φ(X) ≤ f(X).

On a donc Eφ(X) ≤ Ef(X). Mais comme φ est une fonction affine, Eφ(X) =
φ(EX). Ainsi,

∀φ ∈ Φ φ(EX) ≤ Ef(X),
Prenons alors φ(t) = f(EX)+f ′

d(EX)(t−x) (ou φ(t) = f(EX)+f ′
g(EX)(t−

x) si EX est l’extrémité à droite de I). D’après le lemme 9, φ ∈ Φ, ce qui
donne

f(EX) ≤ Ef(X).

Pour retenir quel est le sens de l’égalité, prendre la fonction convexe
φ(x) = |x|.
Corollaire 14. Soient f une fonction convexe sur l’intervalle I, θ1, . . . θn

des réels positifs de somme 1, x1, . . . , xn des éléments de I. Alors

f

(
n∑

k=1
θkxk

)
≤

n∑
k=1

θkf(xk).

Démonstration. Il suffit de considérer une variable aléatoire discrète X telle
que P(X = xi) = θi pour tout i entre 1 et n. Le théorème de transfert pour
une variable aléatoire discrète et l’inégalité de Jensen donnent

f

(
n∑

k=1
θkxk

)
= f(EX) ≤ E[f(x)] =

n∑
k=1

θkf(xk).

6.6 Intégrale et queue de distribution
Théorème 76. Soit X une variable aléatoire positive. On a

EX =
∫
R+

P(X > t) dλ(t).

Démonstration.∫
R+

P(X > t) dλ(t) =
∫
R+

∫
R+

11]t,+∞[(s) dPX(s) dλ(t)

=
∫
R+

∫
R+

11[0,s[(t) dPX(s) dλ(t)

=
∫
R+

∫
R+

11[0,s[(t) dλ(t) dPX(s)

=
∫
R+
s dPX(s)

= EX
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Corollaire 15. Soit X une variable aléatoire à valeurs dans N. On a

EX =
+∞∑
k=0

P(X > k).

Démonstration. D’après le théorème précédent, EX =
∫
R+

P(X > t) dλ(t).
Comme t 7→ P(X > t) est une fonction positive, on a

∫
R+

P(X > t) dλ(t) =
+∞∑
k=0

∫
[k,k+1[

P(X > t) dλ(t).

Mais comme X est à valeurs entières, on a

∀t ∈ [k, k + 1[ P(X > t) = P(X > k),

d’où le résultat.

6.7 Moments d’ordre 2
On dit qu’une variable aléatoire X admet un moment d’ordre 2 si elle est

de carré intégrable, c’est à dire si X2 ∈ L1.
On note L2(Ω,F ,P) (ou encore L2) l’ensemble des variables aléatoires de

carré intégrable.

Lemme 10. Soient X, Y ∈ L2. Alors la variable aléatoire XY est intégrable.

Démonstration. Pour tous les réels a, b, on a |ab| ≤ 1
2(a2 + b2).

(En effet, a2+b2+2ab = (a+b)2 ≥ 0, d’où (a2+b2)/2 ≥ −ab et a2+b2−2ab =
(a− b)2 ≥ 0, d’où (a2 + b2)/2 ≥ ab.)
On a donc

0 ≤ |XY | ≤ 1
2

(X2 + Y 2),

Comme X2 + Y 2 est intégrable, on en déduit que |XY | est intégrable, ce qui
est ce que l’on voulait montrer

Corollaire 16. L2(Ω,F ,P) est un espace vectoriel.

Démonstration. La stabilité par multiplication ne pose pas de problème. Pour
la stabilité par addition, il faut remarquer que

(X + Y )2 = X2 + Y 2 + 2XY,

puis utiliser le lemme précédent et le fait que L1 est un espace vectoriel.

6.7.1 Covariance et variance
Soient X et Y deux variables aléatoires admettant chacune un moment

d’ordre 2. On appelle covariance du couple (X, Y ) le nombre

Covar(X,Y ) = E[(X − EX)(Y − EY )]

On appelle variance de X le nombre
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VarX = Covar(X,X) = E(X − EX)2.

On appelle écart-type de X le nombre

σ(X) = (VarX)1/2.

Vocabulaire : On dit qu’une variable aléatoire est réduite si on a VarX = 1
(ou de manière équivalente si σ(X) = 1).

On a les propriétés suivantes

1. (X,Y ) 7→ Covar(X,Y ) est une forme bilinéaire symétrique positive.
2. ∀a, b ∈ R Covar(X − a, Y − b) = Covar(X, Y ).
3. Var(X + Y ) = VarX + VarY + 2 Covar(X, Y ).
4. Covar(X, Y ) = EXY − (EX)(EY ).
5. VarX = EX2 − (EX)2.
6. |EXY |2 ≤ EX2EY 2 (inégalité de Cauchy-Schwarz)
7. | Covar(X,Y )| ≤ σ(X)σ(Y ).

Démonstration. 1. Notons ⟨X,Y ⟩ = EX, Y . Il est facile de voir que
(X,Y ) 7→ ⟨X, Y ⟩ est une forme bilinéaire symétrique positive. Po-
sons L(X) = X − EX. X 7→ L(X) est une application linéaire de L2

dans lui-même. On a Covar(X, Y ) = ⟨L(X), L(Y )⟩. Les deux obser-
vations faites ci-dessus permettent de dire que (X,Y ) 7→ Covar(X,Y )
est une forme bilinéaire symétrique positive.

2.

Covar(X − a, Y − b) = ⟨L(X − a), L(Y − b)⟩
= ⟨L(X) − L(a), L(Y ) − L(b)⟩
= ⟨L(X) − 0, L(Y ) − 0⟩
= Covar(X, Y )

3.

Var(X + Y ) = Covar(X + Y,X + Y )
= Covar(X,X) + 2 Covar(X, Y ) + Covar(Y, Y )
= VarX + 2 Covar(X, Y ) + VarY

Pour passer de la ligne 1 à la ligne 2, on utilise le fait que la covariance
est bilinéaire symétrique.

4. (X − EX)(Y − EY ) = XY + EXEY − (EX)Y − (EY )X.
D’où

E(X − EX)(Y − EY ) = EXY + E(EXEY ) − EXEY − EY EX
= EXY + EXEY − 2EXEY
= EXY − (EX)(EY ).

5. Il suffit d’appliquer la formule précédente avec X = Y .
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6. Comme ⟨., .⟩ est une forme bilinéaire symétrique positive, l’inégalité
de Cauchy-Schwarz s’applique.

7. Il suffit d’appliquer l’inégalité de Cauchy-Schwarz à la forme bilinéaire
symétrique positive Covar , puis de prendre la racine carrée.

Lorsque σ(X) et σ(Y ) sont non nuls, on définit le coefficient de corrélation
de X et Y par

Corr(X,Y ) = Covar(X, Y )
σ(X)σ(Y )

.

D’après ce qui précède, Covar(X, Y ) ∈ [−1; 1]. Lorsque Covar(X,Y ) = 0
(ce qui implique Corr(X,Y ) = 0 si σ(X) et σ(Y ) sont non nuls), on dit que
X et Y ne sont pas corrélées.
Lorsque Covar(X, Y ) ≥ 0 (ce qui implique Corr(X, Y ) ≥ 0 si σ(X) et σ(Y )
sont non nuls), on dit que X et Y sont positivement corrélées.
Lorsque Covar(X,Y ) ≤ 0 (ce qui implique Corr(X, Y ) ≤ 0 si σ(X) et σ(Y )
sont non nuls), on dit que X et Y sont négativement corrélées.

6.7.2 Matrice de covariance
Si X = (X1, . . . , Xn) est un vecteur aléatoire dont toutes les composantes

admettent un moment d’ordre deux, on convient de dire que le vecteur a un
moment d’ordre deux et on appelle matrice de covariance de X la matrice
n× n dont les coefficients sont (Covar(Xi, Xj))1≤i,j≤n.

Théorème 77. Si X = (X1, . . . , Xn) est un vecteur aléatoire admettant un
moment d’ordre deux , la matrice de covariance de X est la matrice dans la
base canonique de l’application bilinéaire positive

Rn × Rn → R
(a, b) 7→ Covar(⟨X, a⟩, ⟨X, b⟩)

C’est une matrice symétrique positive.

Démonstration. À X fixé, l’application X 7→ ⟨X, a⟩ est une application li-
néaire. Comme on a déjà montré que Covar était une forme bilinéaire sy-
métrique positive, il s’ensuit que l’application considérée ici est une forme
bilinéaire symétrique positive. Cette application envoie le couple (ei, ej) sur
Covar(⟨X, ei⟩, ⟨X, ej⟩) = Covar(Xi, Xj). La matrice d’une forme bilinéaire
symétrique positive est une matrice symétrique positive.

Théorème 78. Soit X = (X1, . . . , Xn) est un vecteur aléatoire admettant
un moment d’ordre deux et de matrice de covariance CX et d’espérance mX .
Soit A une application linéaire de Rn dans Rp, et b un vecteur de Rp. Alors
Y = AX+b admet CY = ACXA

∗ comme matrice de covariance et l’espérance
de Y vaut AmX + b.
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Démonstration.

EYi = E(
n∑

k=1
ai,kXk + bi)

=
n∑

k=1
ai,kEXk + bi

=
n∑

k=1
ai,kmk + bi

= (Am+ b)i

Covar(⟨Y, a⟩, ⟨Y, b⟩) = Covar(⟨AX + c, a⟩, ⟨AX + c, b⟩)
= Covar(⟨AX, a⟩, ⟨AX, b⟩)
= Covar(⟨X,A∗a⟩, ⟨X,A∗b⟩)
= ⟨CXA

∗a,A∗b⟩
= ⟨ACXA

∗a, b⟩

6.7.3 Espérance et indépendance
Le théorème suivant est très important :

Théorème 79. Soient X, Y deux variables aléatoires intégrables indépen-
dantes. Alors, leur produit XY est une variable aléatoire intégrable et l’on
a

E[XY ] = E[X]E[Y ].
Démonstration. D’après le théorème de transfert, on a

E|XY | =
∫
R2

|xy| dP(X,Y )

Il vient
E|XY | =

∫
R2

|xy| dP(X,Y )

=
∫
R2

|x|.|y| d(PX ⊗ PY )(x, y)

=
∫
R

|x|dPX(x).
∫
R

|y| dPY (y)

= E|X|.E|Y |
< +∞

Ainsi, le théorème de Fubini nous a permis de montrer que XY était inté-
grable. Maintenant, et on a

EXY =
∫
R2
xy dP(X,Y )

=
∫
R2
xy d(PX ⊗ PY )(x, y)

=
∫
R
xdPX(x).

∫
R
y dPY (y)

= EXEY
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Corollaire 17. Soient X, Y deux variables aléatoires intégrables indépen-
dantes. Alors X et Y ne sont pas corrélées.

Démonstration. On a Covar(X,Y ) = E[XY ] − E[X]E[Y ] = 0.

Remarque importante : Des variables aléatoires peuvent être non
corrélées sans être indépendantes.
Exemple : soient deux variables aléatoires vérifiant

P({X = 1}∩{Y = 1}) = P({X = 1}∩{Y = −1}) = P({X = −1}∩{Y = 0}) = 1/3.

La matrice M associée à la loi du couple est(
0 1/3 0

1/3 0 1/3

)
La loi de Y s’obtient en faisant la somme des lignes : on obtient(

1/3 1/3 1/3
)

On a donc EY = 1
3 × (−1) + 1

3 × (0) + 1
3 × (1) = 0.

D’autre part EXY = ∑
i∈{−1;1}

∑
j∈{−1;0;1} ijP({X = i} ∩ {Y = j}) = 1/3 −

1/3 = 0.
On a donc Covar(X,Y ) = EXY − EXEY = 0.
Cependant

0 = P({X = 1} ∩ {Y = 0}) ̸= P(X = 1)P(Y = 0) = 2
3

× 1
3
.

Corollaire 18. Soient X, Y deux variables aléatoires indépendantes de carré
intégrable. Alors on a

Var(X + Y ) = VarX + VarY.

Démonstration. On a toujours VarX+Y = VarX+VarY+2 Covar(X,Y ).Comme
X et Y sont indépendantes, elles ne sont pas corrélées, d’où le résultat.

6.8 Lois images par des transformations af-
fines

6.8.1 Exemple fondamental
Théorème 80. Soit A ∈ Gld(R) et b ∈ Rd. On suppose que le vecteur
aléatoire X admet la densité f par rapport à la mesure de Lebesgue sur Rd.
Alors, le vecteur aléatoire Y = AX + b admet la densité

g(y) = 1
| detA|

f(A−1(y − b)).

Démonstration. C’est essentiellement une reformulation du corollaire 7.
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Applications :
1. Si X suit la loi uniforme sur un compact K de Rd, alors Y = AX + b

suit la loi uniforme sur l’image de K par x 7→ Ax+b. Cette application
est particulièrement intéressante en dimension 1.

2. Si X ∼ Γ(a, λ), alors pour tout µ > 0, on a 1
µ
X ∼ Γ(a, λµ).

3. Si X suit la loi exponentielle de paramètre e a > 0 alors 1
µ
X suit la

loi exponentielle de paramètre µa. ( Remarquer que ceci constitue un
cas particulier de la remarque prédente.)

4. Pour a ∈ R et b > 0, X suit la loi de Cauchy C(0, 1) si et seulement si
Y = bX + a suit la loi de Cauchy C(a, b).

5. Soit σ > 0, m ∈ R. On a X ∼ N (m,σ2) ⇐⇒ X−m
σ

∼ N (0, 1).

6.8.2 Application aux lois gaussiennes
Lemme 11. Soient X = (X1, X2) un vecteur aléatoire formé de deux va-
riables aléatoires indépendantes suivant la loi normale N (0, 1). On pose Y1 =
cos θX1 + sin θX2 et Y2 = − sin θX1 + cos θX2. Alors Y1 et Y2 sont deux va-
riables aléatoires indépendantes suivant la loi normale N (0, 1).

Démonstration. Si l’on note, pour x ∈ R2, x = (x1, x2), la densité de X est

1√
2π

exp(−x2
1

2
) × 1√

2π
exp(−x2

2
2

) = 1
2π

exp(−x2
1 + x2

2
2

) = 1
2π

exp(−∥x∥2
2

2
).

On a donc Y = MX, avec

M =
(

cos θ − sin θ
sin θ cos θ

)

Ainsi, le vecteur Y = MX admet pour densité

y 7→ 1
detM

1
2π

exp(−∥M−1y∥2
2

2
).

M est une matrice de rotation, donc son déterminant vaut 1 et c’est une
isométrie pour la norme euclidienne, ce qui implique que pour tout x ∈ R2

on a ∥M−1y∥2 = ∥y∥2 : la densité de Y est donc

y 7→ 1
2π

exp(−∥y∥2
2

2
),

ce qui est précisément la densité de X : Y a donc même loi que X, donc ses
composantes Y1 et Y2 sont indépendantes et suivent la loi normale N (0, 1).

Théorème 81. Soient U1 et U2 deux variables aléatoires indépendantes, avec
U1 ∼ N (m1, σ

2
1) et U2 ∼ N (m2, σ

2
2). Alors U1 + U2 ∼ N (m1 +m2, σ

2
1 + σ2

2).

Démonstration. Si σ1 = 0 ou σ2 = 0, la variable aléatoire associée est
constante est donc le résultat provient de la remarque faite plus haut – l’ap-
plication affine est une translation.
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Supposons donc σ1 > 0 et σ2 > 0. On pose X1 = U1−m1
σ1

et X2 = U2−m2
σ2

.
On peut trouver θ tel que cos θ = σ1√

σ2
1+σ2

2
et sin θ = σ2√

σ2
1+σ2

2
. Alors, si on

pose σ =
√
σ2

1 + σ2
2, on a

U1 + U2 = m1 +m2 + σ(cos θX1 + sin θX2).

D’après le lemme, cos θX1 + sin θX2 ∼ N (0, 1), donc U1 + U2 ∼ N (m1 +
m2, σ

2).

6.8.3 Application : convolution de deux lois à densité
Théorème 82. Soient X et Y deux variables aléatoires indépendantes sur
(Ω,F ,P), de densité f et g. Alors Z = X + Y admet comme densité la
fonction

x 7→
∫ +∞

−∞
f(x− t)g(t) dt.

Si, de plus, X et Y sont à valeurs positives, alors la densité est simplement

x 7→ 11R+(x)
∫ x

0
f(x− t)g(t) dt.

Démonstration. On pose(
Z
T

)
= A

(
X
Y

)
, avec A =

(
1 1
0 1

)

La densité de (X,Y ) est h(x, y) = f(x)g(y). D’après l’exemple fondamental,
la densité de (Z, T ) est

g(z, t) = 1
| detA|

f(A−1
(
z
t

)
).

On a
detA = 1 et A−1 =

(
1 −1
0 1

)
,

donc g(z, t) = h(z − t, t) = f(z − t)g(t).
D’après le théorème 63, Z admet comme densité par rapport à la mesure

de Lebesgue :

z 7→
∫
R
g(z, t) dλ(t) =

∫
R
f(z − t)g(t) dλ(t).

Dans le cas où X et Y sont à valeurs positives, il suffit de remarquer
que f(z − t) est nul si z dépasse t et que g(t) est nul si t est négatif. Ainsi,
f(z − t)g(t) ne peut être non nul que pour z vérifiant 0 ≤ t ≤ z, ce qui n’est
évidemment jamais vérifié si z est négatif.

Exemple : ci-dessous, le graphe de la densité de Z lorsque X et Y suivent
toutes les deux la loi uniforme sur [0, 1].
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(1 − |x− 1|)11[0,2](x)
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Application : Γ(a, λ) ∗ Γ(b, λ) = Γ(a+ b, λ)

Théorème 83. Soit a, b, λ strictement positifs, X et Y deux variables aléa-
toires indépendantes, X suivant la loi Γ(a, λ) et Y la loi Γ(b, λ). Alors Z =
X + Y suit la loi Γ(a+ b, λ).

Démonstration. Pour tous a et λ strictement positifs, on note fa,λ la densité
de la loi Γ(a, λ), soit (rappel)

fa,λ(x) = 11R+(x) λa

Γ(a)
xa−1e−λx.

D’après le théorème précédent, Z admet une densité fZ . Cette densité est
nulle sur R− tandis que pour x positif, on a

fZ(x) =
∫ x

0
fa,λ(x− t)fb,λ(t) dt

=
∫ x

0

λa

Γ(a)
ta−1e−λt λ

b

Γ(b)
(x− t)b−1e−λ(x−t) dt

= λa+be−λx

Γ(a)Γ(b)

∫ x

0
ta−1(x− t)b−1 dt

On fait le changement de variable t = θx. On obtient

fZ(x) = λa+be−λx

Γ(a)Γ(b)
xa−1xb−1x

∫ 1

0
θa−1(1 − θ)b−1 dθ

= λa+be−λx

Γ(a)Γ(b)
xa+b−1

∫ 1

0
θa−1(1 − θ)b−1 dθ

= Ka,bfa+b,λ(x),

où Ka,b = Γ(a+b)
Γ(a)Γ(b)

∫ 1
0 θ

a−1(1 − θ)b−1 dθ. Evidemment fZ et x 7→ Ka,bfa+b,λ(x)
coincident également sur R− où elles sont nulles. On a donc∫

R
fZ(x) dλ(x) =

∫
R
Ka,bfa+b,λ(x) dλ(x) = Ka,b

∫
R
fa+b,λ(x).
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Mais fZ et fa+b,λ sont des densités donc leur intégrale sur R vaut un. On en
déduit Ka,b = 1, d’où

fZ(x) = fa+b,λ(x).
La densité de Z est la densité de Γ(a+ b,Λ), donc Z suit la loi Γ(a+ b,Λ).

Remarque : comme sous-produit de cette démonstration, on a obtenu le
résultat non trivial suivant :

Γ(a)Γ(b)
Γ(a+ b)

=
∫ 1

0
θa−1(1 − θ)b−1 dθ.

6.9 Loi image par un C1-difféomorphisme
Le premier réflexe à avoir est d’utiliser le corollaire 8, qui est bien sûr très

utile. Le paragraphe suivant décrit des stratégies lorsque l’application n’est
pas immédiate.

6.10 Calcul des premiers moments des lois
discrètes usuelles

6.10.1 Indicatrice d’un événement
On rappelle que pour A ⊂ Ω, l’application 11A (appelée indicatrice de A)

est définie sur Ω par

11A(x) =
{

1 si x ∈ A
0 si x /∈ A

1A est une variable aléatoire à valeurs dans {0; 1}. Il est important de re-
marquer que, comme ∀x ∈ {0; 1} x2 = x, on a 112

A = 11A. Maintenant, on a
E11A = P(A) et

Var 11A = E112
A − (E11A)2

= E11A − (E11A)2

= P(A) − P(A)2

= P(A)(1 − P(A)).

6.10.2 Loi binomiale
On a vu que la loi binomiale de paramètres n et p était la loi de

X =
n∑

k=1
11Ak

, où A1, . . . , An sont n événements indépendants de même pro-

babilité p. On a donc

EX =
n∑

k=1
E11Ak

=
n∑

k=1
P(Ak) = np,

et comme les variables aléatoires sont indépendantes

VarX =
n∑

k=1
Var 11Ak

=
n∑

k=1
P(Ak)(1 − P(Ak)) = np(1 − p).
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6.10.3 Loi géométrique

Soit X une variable aléatoire suivant une loi géométrique de paramètre
p ∈]0, 1]. On a

EX =
+∞∑
k=0

kP(X = k)

=
+∞∑
k=1

kP(X = k)

=
+∞∑
k=1

kp(1 − p)k−1

= p
+∞∑
k=1

k(1 − p)k−1

= p
1

(1 − (1 − p))2

= 1
p
.

EX(X − 1) =
+∞∑
k=0

k(k − 1)P(X = k)

=
+∞∑
k=2

k(k − 1)P(X = k)

=
+∞∑
k=2

k(k − 1)p(1 − p)k−1

= p(1 − p)
+∞∑
k=2

k(k − 1)(1 − p)k−2

= p(1 − p) 2
(1 − (1 − p))3

= 2(1 − p)
p2 .

On a alors EX2 = EX(X − 1) + EX = 1
p

+ 2(1−p)
p2 et

VarX = EX2 − (EX)2 = 1
p

+ 2(1−p)
p2 − 1

p2 = 1−p
p2 .
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6.10.4 Loi de Poisson

EX =
+∞∑
k=0

kP(X = k)

=
+∞∑
k=1

kP(X = k)

=
+∞∑
k=1

ke−λλ
k

k!

= e−λλ
+∞∑
k=1

λk−1

(k − 1)!

= e−λλeλ

= λ

EX(X − 1) =
+∞∑
k=0

k(k − 1)P(X = k)

=
+∞∑
k=2

k(k − 1)P(X = k)

=
+∞∑
k=2

k(k − 1)e−λλ
k

k!

= e−λλ2
+∞∑
k=2

λk−2

(k − 2)!

= e−λλ2eλ

= λ2

On a alors EX2 = EX(X − 1) + EX = λ2 + λ et
VarX = EX2 − (EX)2 = λ2 + λ− λ2 = λ.

6.10.5 Loi hypergéométrique

On rappelle que la loi hypergéométrique H(N,n, k) est la loi image de la
loi uniforme sur Ω = B(N, k) par l’application

X : B(N, k) → N
ω 7→ X(ω) = |{1, . . . , n}) ∩ ω|

On va montrer que EX = k n
N

et VarX = k n
N

(1 − n
N

)N−1
N

.
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Démonstration. Notons P la loi uniforme sur Ω. Par souci de lisibilité, on
définit l’ensemble aléatoire A par A(ω) = ω. Ainsi

X = |{1, . . . , n}) ∩ A|

=
n∑

i=1
11{i∈A}

Pour tout k ∈ {1, . . . , n}, on a

E11{i∈A} = P(i ∈ A) = 1 −

(
N−1

k

)
(

N
k

) = 1 − (N − 1)!(N − k)!
N !(N − k − 1)!

= 1 − N − k

N
= k

N
.

Ainsi
EX =

n∑
i=1

11{i∈A} = nk

N
= k

n

N
.

Maintenant, on a

VarX =
n∑

i=1

n∑
j=1

Covar(11{i∈A}, 11{j∈A}).

Pour i = j, on a

Covar(11{i∈A}, 11{j∈A}) = Var 11{i∈A} = P(j ∈ A)(1 − P(j ∈ A)) = k

N
(1 − k

N
).

Pour i ̸= j, on a

Covar(11{i∈A}, 11{j∈A}) = Covar(1 − 11{i∈A}, 1 − 11{j∈A})
= Covar(11{i/∈A}, 11{j /∈A})
= P(i /∈ A, j /∈ A) − P(i /∈ A)P(j /∈ A)

=

(
N−2

k

)
(

N
k

) − (N − k

N
)2

= (N − k)(N − k − 1)
N(N − 1)

− (N − k

N
)2

= − 1
N − 1

k

N
(1 − k

N
)

On en déduit

VarX = n× k

N
(1 − k

N
) + n(n− 1) × (− 1

N − 1
k

N
(1 − k

N
))

= n
k

N
(1 − k

N
)(1 − n− 1

N − 1
)

= n
k

N
(1 − k

N
)N − n

N − 1

= k
n

N
(1 − n

N
)N − 1

N

On remarque qu’une loi hypergéométrique a la même espérance qu’une
loi binomiale B(k, n

N
) et que sa variance ne diffère de celle de cette binomiale

que d’un facteur N−1
N

.
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6.11 Calcul des premiers moments des lois à
densité usuelles

6.11.1 Loi uniforme sur un segment
Soit X une variable aléatoire suivant la loi uniforme sur [−1, 1]. La densité

de X est donc
x 7→ 1

2
11[−1,1](x).

On a donc
EX =

∫ 1

−1

1
2
x dx = 0

et
EX2 =

∫ 1

−1

1
2
x2 dx = 1

3
.

Comme X est centrée, on a VarX = EX2.
Passons au cas général : on pose Y = a+b

2 + b−a
2 X. X suit la loi uniforme

sur [−1, 1] si et seulement Y suit la loi uniforme sur [a, b]. On a alors
— EY = Ea+b

2 + b−a
2 EX = a+b

2 .

— VarY = ( b−a
2 )2 VarX = (b−a)2

12

6.11.2 Loi gaussienne
Soit X une variable aléatoire suivant la loi N (0, 1). On rappelle que la

densité de X est
f(x) = 1√

2π
e− x2

2 .

Lemme 12. Soit g une fonction dérivable sur R telle qu’il existe A et c tels
que

∀x ∈ R |g(x)| + |g′(x)| ≤ A exp(−c|x|).

Alors, si X ∼ N (0, 1) , alors g′(X) et Xg(X) sont intégrables et on a

E[g′(X)] = E[Xg(X)].

Démonstration. Il est facile de vérifier que

d
dx

(g(x)f(x)) = (g′(x) − xg(x))f(x).

On a donc

∀a, b ∈ R g(b)f(b) − g(a)f(a) =
∫ b

a
g′(x)f(x) dx−

∫ b

a
xg(x)f(x) dx

Les hypothèses faites sur g et g′ assurent l’intégrabilité sur R de g′f et gf .

Comme, de plus lim
a→−∞

g(a)f(a) = lim
b→+∞

g(b)f(b) = 0, on en déduit que

0 =
∫
R
g′(x)f(x) dλ(x) −

∫
R
xg(x)f(x) dλ(x),

soit E[g′(X)] = E[Xg(X)].
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En prenant g(x) = x, on obtient l’existence d’un moment d’ordre 2 avec
E[X2] = 1. D’autre part, l’existence d’un moment d’ordre 2 implique celle
d’un moment d’ordre 1. Comme la densité de X est paire, on en déduit que
EX = 0. On a donc VarX = EX2 = 1.

Passons au cas général. Si l’on a Y = m + σX, on sait que Y suit la loi
N (m,σ2). On a alors EY = m+ σEX = m et VarY = σ2 VarX = σ2.

Exercice laissé au lecteur : pourX ∼ N (0, 1), exprimer E[X2n] en fonction
de n.

6.11.3 Lois Gamma
Soit X une variable aléatoire suivant la loi Γ(a, λ). Alors, X admet des

moments de tout ordre, avec pour tout α ≥ 0, on a

EXα = λ−α Γ(a+ α)
Γ(a)

.

En particulier EX = a
λ

et VarX = a
λ2 .

Démonstration. Pour tous a et λ strictement positifs, on note fa,λ la densité
de la loi Γ(a,Λ), soit (rappel)

fa,λ(x) = 11R+(x) λa

Γ(a)
xa−1e−λx.

D’après le théorème de transfert,

EXα =
∫
R+
xαfa,λ(x) dx

=
∫
R+
λ−α Γ(a+ α)

Γ(a)
fa+α,λ(x) dx

= λ−α Γ(a+ α)
Γ(a)

Ainsi EX = λ−1 Γ(a+1)
Γ(a) = a

λ
, EX2 = λ−2 Γ(a+2)

Γ(a) = a(a+1)
λ2 VarX = EX2 −

(EX)2 = a(a+1)
λ2 − a2

λ2 = a
λ2 .

6.11.4 Lois exponentielles
Soit X suivant une loi exponentielle de paramètre λ > 0. La loi exponen-

tielle est un cas particulier de la loi Gamma : on a E(λ) = Γ(1, λ). On déduit
du calcul précédent que EX = 1

λ
et VarX = 1

λ2 .

6.11.5 Lois de Cauchy
Soient a ∈ R, b > 0. La loi de Cauchy C(a, b) admet comme densité par

rapport à la mesure de Lebesgue :

x 7→ 1
π

b

(x− a)2 + b2 ,
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donc pour k ≥ 1, on a

E|X|k = 1
π

b|x|k

(x− a)2 + b2 = +∞,

donc les lois de Cauchy n’admettent pas de moment d’ordre 1, ni , a fortiori,
d’ordre supérieur.
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6.12 Exercices sur les espérances
Exercice 76. Un jeu consiste à effectuer une mise en choisissant un nombre
entre 1 et 6, puis à lancer simultanément trois dés. Si le numéro choisi sort
une fois, le joueur récupère sa mise plus une somme égale à sa mise. Si le
numéro choisi sort deux fois, le joueur récupère sa mise plus une somme égale
à deux fois sa mise. Enfin, si le numéro choisi sort trois fois, le joueur récupère
sa mise plus une somme égale à trois fois sa mise. Quelle est l’espérance de
gain à ce jeu ?

Exercice 77. Soient A,B deux éléments observables. On note

A∆B = {x ∈ A;x /∈ B} ∪ {x ∈ B; x /∈ A}.

Ce sont donc les éléments qui sont dans A ou dans B, mais pas dans les deux.
Montrer 11A∆B = (11A − 11B)2. En déduire

P(A∆B) = P(A) + P(B) − 2P(A ∩B).

Exercice 78. Soient A,B deux éléments observables. Montrer que

|P(A ∩B) − P(A)P(B)| ≤
√
P(A)P(B).

Exercice 79. 1. Soit X une variable aléatoire de carré intégrable. On
note σ2 sa variance et m son espérance. Montrer que pour tout a réel,
σ2 ≤ E(X − a)2.

2. Soient a1 ≤ a2 ≤ · · · ≤ an. On pose

m = a1 + · · · + an

n
.

Montrer que
1
n

n∑
k=1

(ak −m)2 ≤ (an − a1)2

4
.

Exercice 80. Soit X une variable aléatoire à valeurs dans N∗ telle la suite
(pn)n≥1 définie par pn = P(X = n) soit décroissante. Montrer que pour toute
injection σ de N∗ dans lui-même, on a

Eσ(X) ≥ EX.

Exercice 81. On suppose que Y = lnX vérifie Y ∼ N (m,σ2) (on dit alors
que X est log-normale). Calculer EX et VarX.

Exercice 82. Calculer E sinX, où P(X = π
2 ) = 1

6 ,P(X = π
3 ) = 1

3 ,P(X =
π
6 ) = 1

2 .

Exercice 83. Soient X,Y deux variables aléatoires suivant chacune une loi
uniforme sur [a, b]. Montrer que E|X−Y | ≤ b−a

2 . Que vaut E|X−Y | lorsque
X et Y sont indépendantes ?

Exercice 84. Soit X une variable aléatoire suivant la loi uniforme sur [0, 1].
Déterminer la loi de Z = − ln(1 −X).
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Exercice 85. Soit X une variable aléatoire de densité f . Montrer que la
variable aléatoire |X| admet comme densité

x 7→ 11R+(x)(f(x) + f(−x)).

Exercice 86. Soit X une variable aléatoire positive de densité f . Montrer
que la variable aléatoire X1/2 admet comme densité

x 7→ 11R+(x)2x(f(x2)).

Exercice 87. Soit X une variable aléatoire normale centrée réduite. Montrer
que la variable aléatoire X2 est à densité et la déterminer.

Exercice 88. La figure ci-dessous représente la densité f(x, y) d’un couple
de variables aléatoires indépendantes X et Y . X suit une loi exponentielle
de paramètre 1 et Y une loi normale centrée réduite.

On a tracé quelques isoclines, c’est à dire des courbes reliant des points
de même densité : f(x, y) = constante. Quelle est la nature géométrique de
ces isoclines ?

0.4
0.35
0.3

0.25
0.2

0.15
0.1

0.05
0

3
2

1
0

-1
-2

-310.80.60.40.20

Exercice 89. Soit X et Y deux variables aléatoires indépendantes. On sup-
pose que X suit la loi normale N (0, 1) et Y la loi gamma γ(n

2 ,
1
2). Calculer

la loi de
Z = Y√

Y/n
.

La loi de Z est appelée loi de Student à n degrés de libertés.

Exercice 90. Soient X et Y deux variables aléatoires indépendantes suivant
la loi uniforme sur [0, 1]. On pose S = X + Y et P = XY .

Déterminer la loi de (S, P ).

Exercice 91. (*)
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Soit f une fonction réelle continue sur l’intervalle fermé [0, 1]. Pour n ∈
N∗, on note Bn le polynôme de Bernstein

Bn(x) =
n∑

k=0
f(k
n

)
(
n

k

)
xk(1 − x)n−k .

Pour tout x ∈]0, 1[ on se donne une suite (Xk) de variables de Bernoulli
indépendantes de même paramètre x. On note Sn = ∑n

k=1 Xk.
1. Déterminer la moyenne E[f(Sn

n
)].

2. Soit pour tout ε > 0, le réel δ(ε) défini par

δ(ε) = sup{|f(x) − f(y)| : x, y ∈ [0, 1] et |x− y| ≤ ε} .

(a) Démontrer que δ(ε) tend vers 0 avec ε.
(b) Démontrer que

sup
x∈[0,1]

|Bn(x) − f(x)| ≤ δ(ε) + 2∥f∥∞

nε2 .

En déduire que la suite des polynômes Bn converge vers f uniformé-
ment sur [0, 1].

Exercice 92. On place 7 dames sur un échiquier torique 41 × 41 de telle
manière qu’aucune dame ne puisse en prendre une autre.

Soit φ une permutation des cases de l’échiquier.
Montrer qu’ il existe x tel que x et φ(x) puissent chacun être pris par au

moins une des dames.

On rappelle que les dames peuvent prendre les pièces qui sont sur la même
ligne, sur la même colonne, ou sur une même diagonale.
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Exercice 93. Soient n, r deux entiers tels que 1 ≤ r ≤ n. On prend r
nombres distincts au hasard dans {1, . . . , n} et on note X le plus petit de ces
r nombres.

1. Quelles valeurs peut prendre X ? Montrer que pour k ∈ {0, n− r}, on
a

P(X > k) =

(
n−k

r

)
(

n
r

) .

2. En déduire que

EX =

(
n+1
r+1

)
(

n
r

) = n+ 1
r + 1

.

Exercice 94. Soient X et Y deux variables aléatoires indépendantes suivant
la loi uniforme sur [0, 1].

1. Soit r la rotation dans R2 de centre (0, 0) et d’angle −π
4 . On pose

(U, V ) = r(X,Y ). Montrer que la loi du vecteur (U, V ) est la loi
uniforme sur un ensemble que l’on déterminera.

2. Pour quelles valeurs de α la variable aléatoire 1
|X−Y |α est-elle inté-

grable ? Lorsqu’elle l’est, calculer sa valeur.

Exercice 95. Soient (Xn)n≥1 une suite de variables aléatoires centrées de
carré intégrable. On suppose qu’il existe une fonction b de Z dans R telle que
E[XiXj] = b(i− j) quels que soient i et j dans N.

1. Montrer que b est paire et exprimer simplement la variance de X1+···+Xn√
n

en fonction des b(i).
2. Montrer que si b(i) < 0 pour tout i non nul, alors la série de terme

général b(i) est convergente, avec ∑+∞
i=1 (−b(i)) ≤ b(0)

2 .

Exercice 96. Probabilité de retour en zéro au temps n d’une marche aléatoire
symétrique

1. Soit X une variable aléatoire à valeurs dans Z. Montrer que

P(X = 0) = 1
2π

∫ 2π

0
E[eiθX ] dθ.

2. Soit X1, . . . , Xn des variables aléatoires indépendantes identiquement
distribuées, avec P(X1 = 1) = P(X1 = −1) = 1/2. On pose Sn =
X1 + · · · + Xn. Montrer que P(S2n = 0) = 2

π
W2n, où Wk désigne

l’intégrale de Wallis (voir exercices du chapitre 4). En déduire que

P(S2n = 0) ∼ 1√
πn

.

Exercice 97. Soit n et k des entiers avec 1 ≤ k ≤ n. On pose

Ω =
{
x ∈ {0, 1}n;

n∑
i=1

xi = k

}
.

On note P la loi uniforme sur Ω. On note X = (X1, . . . , Xn) le vecteur
aléatoire représentant les composantes d’un élément de Ω
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1. Soient i et j deux entiers entre 1 et n distincts, a, b ∈ {0, 1}. Montrer
qu’il y a une bijection entre

Ωa,b
1,2 = {x ∈ Ω;x1 = a et x2 = b}

et
Ωa,b

i,j = {x ∈ Ω;xi = a et xj = b}

En déduire que les vecteurs (X1, X2) et (Xi, Xj) ont même loi.
2. Montrer que pour tout i, Xi suit la loi de Bernoulli de paramètre k/n.

Donner la variance de Xi.
3. Pour tout entier r entier avec 0 ≤ r ≤ n, on pose Sr = ∑r

k=1 Xi.
Calculer l’espérance de Sr. Montrer qu’à n fixé, il existe un polynôme
Pn de degré 2 tel que pour tout r entre 0 et n, VarSr = Pn(r).

4. Montrer que Var(X1 + · · · +Xn) = 0. En déduire la variance de Sr.
5. Proposer une expérience basée sur un tirage sans remise qui puisse se

modéliser à l’aide de la variable Sr.
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Chapitre 7

Espaces Lp et Lp

Soit (Ω,A, µ) un espace mesuré. Pour p ∈ [1,+∞), On note Lp(Ω,A, µ)
l’ensemble des applications mesurables de (Ω,A, µ) dans (R,B(R)) telles que∫

Ω
|f(x)|p dµ(x) < +∞.

On dit que des nombres p et q de ]1,+∞[ sont des exposants conjugués
si ils vérifient.

1
p

+ 1
q

= 1.

On convient également parfois que 1 et l’infini sont des exposants conju-
gués, mais cela ne sera pas utilisé ici.

7.1 De Lp à Lp

7.1.1 Inégalité de Hölder
Théorème 84 (Inégalité de Hölder). Soient p et q des exposants conjugués
de ]1,+∞[, (Ω,A, µ) un espace mesuré, f et g deux éléments de V(Ω,A, µ).
On a ∫

Ω
fg dµ ≤

(∫
Ω

|f(x)|p dµ(x)
)1/p (∫

Ω
|g(x)|q dµ(x)

)1/q

.

Démonstration. Si f est nulle µ presque partout, alors l’inégalité est évidente
(c’est en fait une égalité). Idem pour g. Dans le cas inverse, on a(∫

Ω
|f(x)|p dµ(x)

)1/p

> 0 et
(∫

Ω
|g(x)|q dµ(x)

)1/q

> 0.

Bien sûr,
∫

Ω fg dµ ≤
∫

Ω |f |.|g| dµ, donc remplaçant f par f/ (
∫

Ω |f(x)|p dµ(x))1/p

et g par g/ (
∫

Ω |g(x)|q dµ(x))1/q, on peut se ramener au cas où f et g sont
positives avec (

∫
Ω f(x)p dµ(x))1/p = (

∫
Ω g(x)q dµ(x))1/q = 1.

Or pour tous x, y dans R+, on a

xy ≤ xp

p
+ yq

q
.

Si x ou y est infini, c’est évident. Sinon, on peut écrire x = ea/p, y = eb/q et
appliquer la convexité de la fonction exponentielle.

117
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Ainsi
f(x)g(x) ≤ f(x)p

p
+ g(x)q

q
,

d’où∫
Ω
f(x)g(x) dµ(x) ≤

∫
Ω

f(x)p

p
dµ(x) +

∫
Ω

g(x)q

q
dµ(x) = 1/p+ 1/q = 1.

7.1.2 Inégalité triangulaire
Théorème 85 (Inégalité triangulaire). Soient p ∈ [1,+∞[, (Ω,A, µ) un
espace mesuré, f et g deux éléments de V(Ω,A, µ). On a(∫

Ω
|f(x) + g(x)|p dµ(x)

)1/p

≤
(∫

Ω
|f(x)|p dµ(x)

)1/p

+
(∫

Ω
|g(x)|p dµ(x)

)1/p

.

Démonstration. Dans le cas où p = 1, c’est une conséquence immédiate de
l’inégalité triangulaire sur R et de la positivité de l’intégrale. Supposons donc
p ∈]1,+∞[ et notons q l’exposant conjugué de p. Comme précédemment, on
peut supposer que f et g ne sont pas presque partout nulles. Par ailleurs,
si
∫

Ω |f(x)|p dµ(x) = +∞ ou que
∫

Ω |g(x)|p dµ(x) = +∞, l’inégalité est
évidente. On suppose donc que ces deux quantités sont finies. Comme |f +
g|p ≤ (|f | + |g|)p, on peut supposer sans perte de généralité que f et g sont

positives. Maintenant, comme
(
f + g

2

)p

≤ fp + gp

2
par convexité de x 7→ xp,

il s’ensuit qu’on a également
∫

Ω |f(x) + g(x)|p dµ(x) < +∞.
On écrit alors

(f + g)p = f(f + g)p−1 + g(f + g)p−1.

L’inégalité de Hölder donne∫
Ω
f(f + g)p−1 dµ ≤

(∫
Ω
f p dµ

)1/p (∫
Ω
(f + g)(p−1)q dµ

)1/q

,

soit ∫
Ω
f(f + g)p−1 dµ ≤

(∫
Ω
f p dµ

)1/p (∫
Ω
(f + g)p dµ

)1/q

.

De même, ∫
Ω
g(f + g)p−1 dµ ≤

(∫
Ω
gp dµ

)1/p (∫
Ω
(f + g)p dµ

)1/q

.

En additionnant, on obtient∫
Ω
(f + g)p dµ ≤

((∫
Ω
f p dµ

)1/p

+
(∫

Ω
gp dµ

)1/p
)(∫

Ω
(f + g)p dµ

)1/q

.

D’où (∫
Ω
(f + g)p dµ

)1/p

≤
(∫

Ω
fp dµ

)1/p

+
(∫

Ω
gp dµ

)1/p

.
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Ainsi, il est maintenant simple de constater que si l’on pose

∥f∥p =
(∫

Ω
|f |p dµ

)1/p

,

on définit ainsi une semi-norme sur l’espace vectoriel Lp(Ω,A, µ).
Remarquons bien qu’en général, ∥.∥p ne définit pas une norme sur Lp(Ω,A, µ)

car l’axiome de séparation peut être pris en défaut. Ainsi, sur Lp(R,B(R), λ),
on a bien ∥11Q∥p = 0, mais bien sûr, 11Q ̸= 0.

Notons V = {v ∈ Lp; ∥v∥p = 0}. D’après l’inégalité triangulaire, V est
un sous-espace vectoriel de Lp. Un raisonnement simple (exercice !) permet
en fait de montrer que V = {v ∈ Lp; v = 0 µ p.p.}

Notons Lp le quotient de l’espace vectoriel Lp par son sous-espace vecto-
riel V .

Soit f et g deux éléments de la même classe : k = f − g ∈ V . D’après
l’inégalité triangulaire ∥f∥p ≤ ∥g∥p + ∥k∥p = ∥g∥p. De même ∥g∥p ≤ ∥f∥p +
∥k∥p = ∥f∥p, d’où ∥f∥p = ∥g∥p. La semi-norme passe donc au quotient :
pour f ∈ Lp, on note ∥f∥p = ∥g∥p où g est un quelconque représentant de la
classe f . Evidemment, f 7→ ∥f∥p est encore une semi-norme sur Lp.
Mais en réalité, f 7→ ∥f∥p est une norme sur Lp. En effet, supposons ∥f∥p = 0.
Soit g un représentant de f : on a ∥g∥p = 0, donc g ∈ V , ce qui signifie que
g est dans la classe de 0, donc f est le zéro de Lp.

Bien que Lp ne soit pas un espace vectoriel normé, on pourra lire fréquem-
ment pour des fonctions (fn)n≥1, f de Lp : (fn)n≥1 converge dans Lp (ou par-

fois (fn)n≥1 converge dans Lp) vers f . Cela signifie que lim
n→+∞

∥fn −f∥p = 0,
ou de manière équivalente, que la suite des classes dans Lp des éléments de
(fn)n≥1 converge dans Lp vers la classe de f dans Lp.

7.2 Complétude de Lp

Théorème 86. Pour tout p ∈ [1,+∞[, Lp est complet

Lemme 13. Soit fn une suite d’éléments de Lp avec∑
n≥1

∥fn∥< + ∞.

Alors la suite∑n
k=1 fk converge dans Lp quand n tend vers l’infini.

Démonstration. On note gn un représentant de fn. On va montrer qu’il existe
une fonction g dans Lp telle que ∥∑n

k=1 gk − g∥p tend vers 0, ce qui donnera
la convergence de la suite ∑n

k=1 fk vers la classe de g.
Supposons d’abord que les (gk) sont positives : dans ce cas la suite de

fonctions Sn = ∑n
k=1 gk converge simplement vers une fonction g mesurable

(éventuellement infinie en certains points) Cependant d’après l’inégalité tri-
angulaire ∫

Ω
Sp

n dµ ≤ (
n∑

k=1
∥gk∥p)p,
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et donc d’après le théorème de convergence monotone∫
Ω
gp dµ ≤ (

+∞∑
k=1

∥gk∥p)p < +∞.

Ainsi g est dans Lp. Soient n et n′ avec n′ ≥ n. On a (Sn′ − Sn)p =
(∑n′

k=n+1 gk)p. Faisons tendre n′ vers +∞ : d’après le théorème de conver-
gence dominée, on a∫

Ω
(g − Sn)p dµ = lim

n′→+∞

∫
Ω
(Sn′ − Sn)p dµ,

d’où
∥g − Sn∥p = lim

n′→+∞
∥Sn′ − Sn∥p.

Cependant, d’après l’inégalité triangulaire

∥Sn′ − Sn∥p ≤
n′∑

k=n+1
∥gk∥p

≤
+∞∑

k=n+1
∥gk∥p,

d’où
∥Sn − g∥p ≤

+∞∑
k=n+1

∥gk∥p.

Mais on reconnait là le reste d’une série convergente, donc ∥Sn − g∥p tend
bien vers 0.

Dans le cas général, écrivons gk = g+
k − g−

k . On définit évidemment g+ =∑
g+

k et g− = ∑
g−

k , S+
n = ∑n

k=1 g
+
k , S−

n = ∑n
k=1 g

−
k . La série de terme général

∥g+
k ∥p est convergente car ∥g+

k ∥p ≤ ∥gk∥p. On montre ainsi que ∥S+
n − g+∥p

tend bien vers 0, et de même que ∥S−
n −g−∥p tend bien vers 0. Enfin, l’inégalité

triangulaire permet de conclure que ∥Sn − g∥p tend bien vers 0.

Ainsi, on a montré que dans Lp, toute série absolument convergente est
convergente. Pour conclure, il suffit de s’appuyer sur le résultat d’analyse
suivant.

Lemme 14. Un espace vectoriel normé où toute série absolument conver-
gente converge est complet.

Démonstration. Remarquons d’abord que si une suite de Cauchy admet une
sous-suite convergente, elle converge. En effet supposons (xn) de Cauchy avec
xnk

qui converge vers l. Soit k0 tel que ∥xnk
− l∥ ≤ ε/2 pour k ≥ k0 et b0 tel

que ∥xk −xk′∥ ≤ ε/2 lorsque k et k′ dépassent b0. Alors ∥xn − l∥ ≤ ε dès que
n dépasse max(n0, nb0).

Soit maintenant xn une suite de Cauchy dans un espace où toute série
absolument convergente converge. On pose n0 = 1, puis pour k ≥ 1 :

nk = inf{n > nk−1 : i, i′ ≥ n =⇒ ∥xi − xi′∥ ≤ 2−k}.

Cette suite d’indices est strictement croissante et est bien définie car (xk)
est de Cauchy. Par construction ∥xnk

− xnk+1∥ ≤ 2−k pour k ≥ 1, donc
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la série de terme général xnk
− xnk+1 est absolument convergente. Mais on

a fait l’hypothèse ici qu’une série absolument convergente est convergente,
donc elle est convergente, ce qui veut dire que xnk

est convergente. (xn) est
donc une suite de Cauchy qui admet une sous-suite convergente, elle est donc
convergente.

Théorème 87. Soient f, (fn)n≥1 des fonctions dans Lp telles que (fn)n≥1
converge dans Lp vers f . Alors, il existe une suite strictement croissante
d’indices (nk)k≥1 telle que (fnk

)k≥1 converge presque partout vers f .

Démonstration. On pose gn = |f − fn|p. (gn) converge dans L1 vers 0 et
nous devons montrer l’existence d’une suite strictement croissante d’indices
(nk)k≥1 telle que (gnk

)k≥1 converge presque partout vers 0.
On pose n0 = 1, puis pour k ≥ 1 :

nk = inf{n > nk−1 : i, i′ ≥ n =⇒ ∥gi − gi′∥1 ≤ 2−k}.

Cette suite d’indices est strictement croissante et est bien définie car (gk) est
de Cauchy dans L1. Par construction ∥gnk

− gnk+1∥ ≤ 2−k pour k ≥ 1, donc
la série de terme général ∥gnk

− gnk+1∥1 est convergente. Mais

+∞∑
n=1

∥gnk
− gnk+1∥1 =

+∞∑
n=1

∫
|gnk

− gnk+1| dµ

=
∫ +∞∑

n=1
|gnk

− gnk+1| dµ

La fonction positive
+∞∑
n=1

|gnk
− gnk+1|

est intégrable, elle est donc en particulier finie presque partout. En un point
x tel que

+∞∑
n=1

|gnk
(x) − gnk+1(x)| < +∞,

la suite (gnk
(x))k≥1 converge. (gnk

)k≥1 converge presque partout vers une
fonction g∗. Mais d’après le lemme de Fatou,∫

g∗dµ =
∫

lim gnk
dµ ≤ lim

∫
gnk

dµ = 0,

donc g∗ est nulle presque partout, ce qui achève la preuve.

7.3 Théorèmes d’approximation
Théorème 88. Soit S l’ensemble des fonctions simples s sur (Ω,F) telles
que

µ({x ∈ Ω; s(x) ̸= 0}) < +∞.

Pour tout p ∈ [1,+∞[, S est dense dans Lp(µ) (et donc les classes de ces
fonctions sont denses dans Lp(µ)).
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Démonstration. D’abord, il est facile de voir que S est dans Lp(µ). Soit
f ∈ Lp. Supposons f ≥ 0 et prenons fn comme dans le lemme 90. On a

11{fn>0}2−np ≤ 11{fn>0}f
p
n ≤ f p,

d’où
µ(fn > 0)2−np ≤

∫
Ω
f p dµ,

et donc fn ∈ S. On a |fn −f |p ≤ f p, donc d’après le théorème de convergence
dominée,

∫
Ω |fn − f |p dµ tend vers 0, c’est à dire que fn tend vers f dans Lp.

Le cas général s’ensuit en séparant partie positive et partie négative, comme
dans la preuve du théorème 86.

Théorème 89. Soit p ∈ [1,+∞[. Les classes des fonctions continues à sup-
port compact forment une partie dense dans Lp(Rd,B(Rd))

Ce théorème est admis.
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7.4 Exercices sur les espaces Lp et Lp

Exercice 98. Étudier l’appartenance à L1(R) et à L2(R) des fonction sui-
vantes :

1. f(t) = e−|t|.
2. g(t) = sin t

t
.

3. h(t) = 1√
|t|(1+t2)

.

Exercice 99. Étudier la convergence dans L1(R) et dans L2(R) des suites
suivantes :

1. fn(t) =
√
n exp(−n2t2).

2. gn(t) = n2 sin nt
2π

11[−π/n,π/n](t).
3. hn(t) = 2

πn2

√
n2 − t211[−/n,n](t).

Exercice 100. Soit f une fonction de R dans R intégrable et soit f̃ la classe
de f dans L1(R, λ). Montrer que f̃ contient au plus une fonction continue.

Exercice 101. Soit E = {f ∈ L1(R, λ) ; |f | ≤ 1 λ − p.p}. Montrer que E
est un sous-ensemble fermé de L1(R, λ).

Exercice 102. Montrer que la fonction f : x 7→ 1√
x(1 + | ln(x)|)

est dans

Lp(]0,+∞[, λ) si et seulement si p = 2.

Exercice 103. Montrer que si f et g appartiennent à L1(X,µ) alors
√

|f 2 + g2|
appartient aussi à L1(X,µ).

Exercice 104. Soient α ∈ R et p ∈ [1, +∞[, on note fα l’application de
]0, +∞[ dans ]0, +∞[, définie par fα(x) = xα.

1. Pour quelle(s) valeur(s) de α, la fonction fα appartient-elle à Lp(]0, 1], λ) ?
Calculer alors les normes de fα dans chacun de ces espaces.

2. Même question avec les espaces Lp([1,∞[, λ)

Exercice 105. Donner un exemple de suite (fn) dans L1(X,µ) telle que

1. (fn) converge vers f presque partout mais (fn) ne converge pas vers
f au sens de la norme L1 ;

2. (fn) converge vers f dans L1 mais (fn) ne converge pas vers f presque
partout ;

3. (fn) converge vers f presque partout, (
∫
fndµ) converge vers

∫
fdµ,

mais (fn) ne converge pas vers f au sens de la norme L1.

Exercice 106. Soient (X, M, µ) un espace mesuré avec µ(X) = 1 et f , g
des fonctions mesurables sur X à valeurs dans [0, +∞] telles que fg ≥ 1.
Montrer que l’on a (

∫
X
fdµ)(

∫
X
gdµ) ≥ 1.

Exercice 107. Soient f ∈ Lp(X,µ), g ∈ Lq(X,µ) et r tel que 1
r

= 1
p

+ 1
q
.

Montrer que fg ∈ Lr(X,µ) et que ||fg||r ≤ ||f ||p||g||q.



124 CHAPITRE 7. ESPACES LP ET LP

Exercice 108. Soit p ∈]1,+∞[. Pour f dans Lp(]0,+∞[) et pour x > 0, on
pose

T (f)(x) = 1
x

∫
]0,x[

fdλ .

1. Montrer que T (f) est bien définie sur ]0,+∞[.
2. On suppose dans cette question que f est positive continue à support

compact.
(a) Montrer que T (f) est dérivable sur ]0,+∞[ et calculer sa dérivée.
(b) Montrer que T (f) ∈ Lp(]0,+∞[).

(c) Montrer que
∫

]0,∞[
T (f)pdλ = p

p− 1

∫
]0,∞[

T (f)p−1fdλ.

(d) En déduire que ||T (f)||p ≤ p

p− 1
||f ||p.

(e) Montrer que cette inégalité reste vraie pour f de signe quelconque.
3. Soit f ∈ Lp(]0,+∞[).

(a) Montrer que si (fn) est une suite de fonctions continues à sup-
port compact qui converge vers f dans Lp(]0,+∞[), alors T (fn)
converge vers T (f) λ−presque partout, puis que la suite (T (fn))
est de Cauchy dans Lp(]0,+∞[) et enfin que (T (fn)) converge vers
T (f) dans Lp(]0,+∞[).

(b) En déduire que ||T (f)||p ≤ p

p− 1
||f ||p.

Exercice 109. Soit (X, T , µ) un espace mesuré tel que µ(X) < ∞, 1 < p <
∞ et f : X → R une application borélienne. On suppose que pour toute
fonction g ∈ Lp(X,µ), la fonction fg est intégrable et il existe C > 0 telle

que pour toute fonction g ∈ Lp(X,µ) on ait
∣∣∣∣∣ ∫ fg dµ

∣∣∣∣∣ ≤ C||g||p. Montrer

que f ∈ Lq(X,µ) où q est défini par 1
p

+ 1
q

= 1



Chapitre 8

Convolution et transformation
de Fourier

8.1 Produit de convolution
Remarques :
— Si f1, f2 sont deux fonctions de L1 qui représentent le même élément

de L1, alors
∫
f1 dµ et

∫
f2 dµ sont égales, donc on peut se permettre

d’écrire
∫
f dµ pour f ∈ L1.

— L’application Tt : f 7→ (x 7→ f(x− t)) passe au quotient dans L1(Rd),
car si f1 = f2 presque sûrement, alors f1(. − t) = f2(. − t) presque
sûrement.

Théorème 90. Pour tout f dans Lp, l’application

t 7→ Ttf

est continue sur R.
Démonstration. ∥Tt+hf−Ttf∥p = Th(Ttf)−(Ttf)∥p, donc il suffit de montrer
la continuité en 0. Traitons d’abord le cas où f est une fonction continue à
support compact : comme f est continue Thf tend simplement vers f . En
utilisant le théorème de convergence dominée, on optient alors la convergence
dans Lp de Thf vers f . Passons au cas général. D’après le théorème 89, on
peut trouver g et h, avec f = g+h, g continue à support compact et ∥h∥p ≤ ε.
On a

(Ttf − f) = (Ttg − g) + (Tth− h),
d’où

∥Ttf − f∥p ≤ ∥Ttg − g∥p + ∥Tth∥p + ∥h∥p

≤ ∥Ttg − g∥p + 2∥h∥p,

ce qui entraîne, en faisant tendre t vers 0

lim
t→0

∥Ttf − f∥p ≤ 2ε.

Comme c’est vrai pour tout ε, on en déduit que lim
t→0

∥Ttf − f∥p = 0, ce qui

est bien ce qu’on voulait montrer.

125
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8.1.1 convolution dans L1

Soient f, g deux éléments de L1(λd).

∫
Rd

(∫
Rd

|f(x− t)||g(t)| dλd(t)
)
dλd(x) =

∫
Rd×Rd

|f(x− t)||g(t)| dλd ⊗ λd(t, x)

=
∫
Rd

(∫
Rd

|f(x− t)||g(t)| dλd(x)
)
dλd(t)

=
∫
Rd

|g(t)|
(∫

Rd
|f(x− t)| dλd(x)

)
dλd(t)

=
∫
Rd

|g(t)|
(∫

Rd
|f(x)| dλd(x)

)
dλd(t)

=
(∫

Rd
|f(x)| dλd(x)

)(∫
Rd

|g(t)| dλd(t)
)

< +∞.

Ainsi, la fonction f ∗ g définie par

x 7→ f ∗ g(x) =
∫
Rd
f(x− t)g(t) dλd(t)

est définie en presque tout point x et elle est dans L1 : cette fonction est le
produit de convolution de f par g

Les arguments évoqués plus haut fonctionnent encore : le produit de
convolution “passe au quotient” et définit ainsi une application de L1 × L1

dans L1.
Au passage, notons qu’on a démontré

∥f ∗ g∥1 ≤ ∥f∥1∥g∥1.

En reprenant le calcul précédant et en supposant que f et g sont dans
L1, le théorème de Fubini permet alors d’écrire

∫
Rd

(∫
Rd
f(x− t)g(t) dλd(t)

)
dλd(x) =

∫
Rd×Rd

f(x− t)g(t) dλd ⊗ λd(t, x)

=
∫
Rd

(∫
Rd
f(x− t)g(t) dλd(x)

)
dλd(t)

=
∫
Rd
g(t)

(∫
Rd
f(x− t) dλd(x)

)
dλd(t)

=
∫
Rd
g(t)

(∫
Rd
f(x) dλd(x)

)
dλd(t)

=
(∫

Rd
f(x) dλd(x)

)(∫
Rd
g(t) dλd(t)

)
,

soit
∫
Rd

(f ∗ g)(x) dλd(x) =
(∫

Rd
f(x) dλd(x)

)(∫
Rd
g(t) dλd(t)

)
. (8.1)
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8.1.2 autres produits
Supposons maintenant que g ∈ L1 et que f ∈ Lp. On a∫

|f(x− t)||g(t)| dλd(t) =
∫

|f(x− t)||g(t)|1/p|g(t)|1/q dλd(t)

≤
(∫

|f(x− t)|p|g(t)| dλd(t)
)1/p (∫

|g(t)| dλd(t)
)1/q

D’où∫ (∫
|f(x− t)||g(t)| dλd(t)

)p

dλd(x) ≤
∫ (∫

|f(x− t)|p|g(t)| dλd(t)
)
dλd(x)∥g∥p/q

1

Cependant,∫ (∫
|f(x− t)|p|g(t)| dλd(t)

)
dλd(x) =

∫ (∫
|f(x− t)|p|g(t)| dλd(x)

)
dλd(t)

=
∫ (∫

|f(x− t)|p dλd(x)
)

|g(t)|dλd(t)

=
∫

∥f∥p
p|g(t)|dλd(t)

= ∥f∥p
p∥g∥1,

donc finalement∫ (∫
|f(x− t)||g(t)| dλd(t)

)p

dλd(x) ≤ ∥f∥p
p∥g∥1+p/q

1

Ainsi, l’intégrale ∫
f(x− t)g(t) dλd(t)

converge pour presque que tout x et l’application

x 7→ f ∗ g(t) =
∫
f(x− t)g(t) dλd(t)

représente un élément de Lp avec∫
|f ∗ g(t)|p dλd(t) ≤ ∥f∥p

p∥g∥1+p/q
1 ,

soit
∥f ∗ g∥p ≤ ∥f∥p∥g∥1.

Remarque importante : quel que soit l’espace où on définit les choses, on
a toujours ∫

f(x− t)g(t) dλd(t) =
∫
g(x− t)f(t) dλd(t)

pour les x tels que ∫
|f(x− t)g(t)| dλd(t) < +∞,

de sorte que
f ∗ g = g ∗ f

toutes les fois où cela a un sens.
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8.1.3 Approximations de l’unité
Théorème 91. Soit φ une fonction positive avec∫

Rd
φ(x) dλd(x) = 1.

Pour tout k ≥ 1 posons φk(x) = kdφ(kx).
Alors, pour tout f dans Lp la suite f ∗ φk converge vers f dans Lp.

Démonstration. Notons Mk l’application qui a f associe f ∗φk. C’est une ap-
plication linéaire continue de Lp dans lui même. C’est même une contraction
car

∀f ∈ Lp ∥Mkf∥p ≤ ∥f∥p.

(C’est ce qu’on a montré dans la sous-section précédente.)
Soit x ∈ Rd :

f ∗ φk(x) − f(x) =
∫
f(x− t)φ(kt)kd dλd(t) − f(x)

=
∫
f(x− t/k)φ(t) dλd(t) − f(x)

=
∫
f(x− t/k)φ(t) dλd(t) −

∫
f(x)φ(t) dλd(t)

=
∫

(f(x− t/k) − f(x))φ(t) dλd(t)

Ainsi

|(Mkf − f)(x)| = |
∫

(Tt/kf − f)(x)φ(t) dλd(t)|

≤
(∫

|(Tt/kf − f)(x)|pφ(t) dλd(t)
)1/p

,

ce qui donne

∥Mkf − f∥p ≤
(∫

∥Tt/kf − f∥p
pφ(t) dλd(t)

)1/p

D’après de théorème 90, ∥Tt/kf − f∥p
p tend vers 0 lorsque k tend vers l’infini.

Comme
|∥Tt/kf − f∥p

pφ(t)| ≤ (2∥f∥p)pφ(t),

le théorème de convergence dominée permet de conclure.

8.1.4 Régularisation
Théorème 92. Soit f ∈ Lp(Rd), g C1 à support compact. Alors f ∗ g est C1

sur Rd, avec
Dx(f ∗ g) =

∫
f(t)Dx−tg.

Démonstration. Soit M tel que g(x) = 0 pour ∥x∥ ≥ M . Soit R > 0. Par
définition

f ∗ g(x) =
∫
f(x− t)g(t) dλd(t) =

∫
g(x− t)f(t) dλd(t).
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Ici, c’est bien sûr la deuxième écriture qui va nous intéresser. Supposons
∥x∥ ≤ R. La différentielle de g(x− t)f(t) , vue comme une fonction de x, est
f(t)Dx−tg. Bien entendu

|f(t)Dx−tg| ≤ |f(t)|∥Dg∥∞11B(0,R+M)(t).

f ∈ Lp et ∥Dg∥∞11B(0,R+M) ∈ Lq, donc |f |∥Dg∥∞11B(0,R+M) est dans L1. Le
théorème de convergence dominée pour la différenciation sous le signe somme
donne alors le résultat voulu.
Corollaire 19. Soit f ∈ Lp(Rd), g Ck à support compact. Alors f ∗ g est Ck

sur Rd, avec
Dα

x (f ∗ g) =
∫
f(t)Dα

x−tg,

où on a supposé que |α1| + |α2| + · · · + |αd| ≤ k.
Démonstration. Par récurrence sur k.
Corollaire 20. Les fonctions C∞ à support compacts sont denses dans Lp.
Démonstration. Cela provient immédiatement du Théorème 91 et du corol-
laire précédent.

8.2 transformée de Fourier
Soit f ∈ L1(Rd). On appelle transformée de Fourier de f , et l’on note f̂

la fonction définie sur Rd par

f̂(x) =
∫
ei⟨x,t⟩f(t) dλd(t).

Evidemment, f 7→ f̂ est linéraire, et comme |ei⟨x,t⟩f(t)| ≤ |f(t)|, est on a

∀f ∈ L1 ∥f̂∥∞ ≤ ∥f∥1.

8.2.1 propriétés élémentaires
Pour f, g ∈ L1, on a
— f̂ ∗ g = f̂ .ĝ.
— T̂tf(x) = ei⟨x,t⟩f̂(x)
— Si g(x) = f(x/λ), alors ĝ(x) = λdf̂(λx).
— Si g(x) = f(x)ei⟨x,θ⟩, alors ĝ(x) = λdf̂(x− θ).
—

∫
f(x) dλd(u) = f̂(0)

La première propriété mérite qu’on consacre quelques lignes à sa preuve :

f̂ ∗ g(x) =
∫
ei⟨x,t⟩

(∫
f(t− u)g(u) dλd(u)

)
dλd(t)

=
∫ (∫

ei⟨x,t⟩f(t− u)g(u) dλd(u)
)
dλd(t)

=
∫ (∫

f(t− u)ei⟨x,t−u⟩g(u)ei⟨x,u⟩ dλd(u)
)
dλd(t)

=
∫

(F ∗G)(t) dλd(t),
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où F (t) = f(t)ei⟨x,t⟩ et G(t) = g(t)ei⟨x,t⟩. Mais d’après l’équation (8.1)∫
(F ∗G)(t) dλd(t) =

(∫
F (t)dλd(t)

)(∫
G(t)dλd(t)

)
,

d’où le résultat voulu.

8.2.2 Théorème d’inversion
Théorème 93. Soit f ∈ L1(Rd) telle que f̂ ∈ L1(Rd), alors on a

f(x) = 1
(2π)d

∫
e−i⟨x,t⟩f̂(t) dλd(t) p.p.

Démonstration. On aura besoin du lemme suivant, qui sera démontré (au
moins une fois) en exercice.

Lemme 15. Soit G(x) = 1
(2π)d/2 e

−∥x∥2
2. Alors Ĝ(x) = e−∥x∥2

2 = (2π)d/2G(x).

Pour k ≥ 1, posons Gk(x) = kdG(kx). On a

Ĝk(x) = kdk−dĜ(x/k) = (2π)d/2G(x/k).

On recommence :

̂̂
Gk(x) = (2π)d/2kdĜ(kx) = (2π)dkdG(kx) = (2π)dGk(x),

et comme Gk est paire

̂̂
Gk(−x) = (2π)dGk(x),

soit

1
(2π)d

∫
e−i⟨x,t⟩Ĝk(t) dλd(t) = Gk(x)

On a donc

f ∗Gk(x) = 1
(2π)d

∫ ∫
e−i⟨x−y,t⟩Ĝk(t)f(y) dλd(t) dλd(y)

= 1
(2π)d

∫
e−i⟨x,t⟩Ĝk(t)f̂(t) dλd(t)

En utilisant le théorème de convergence dominée, on voit que le terme de
droite tend vers 1

(2π)d

∫
e−i⟨x,t⟩f̂(t) dλd(t) lorsque k tend vers l’infini. Mais

d’après le théorème 91, le membre de gauche converge dans L1 vers f . Comme
la convergence dans L1 entraîne la convergence d’une sous-suite presque par-
tout, l’unicité de la limite donne l’égalité voulue.
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8.3 Exercices sur la convolution et la trans-
formée de Fourier

Exercice 110. Soient f et g ∈ L1(Rn). Montrer que si f (resp. g) est nulle
presque-partout en dehors d’un ensemble A (resp. B) alors f ∗ g est nulle
presque-partout en dehors de A+B = {a+ b; a ∈ A, b ∈ B}.

Exercice 111. (*)Calculer le produit de convolution f ∗ g des fonctions
suivantes définies sur R (a > 0, b > 0) :

1. f(x) = exp(− x2

2a2 ) et g(x) = exp(− x2

2b2 ).
(On admettra que

∫
exp(−x2

2 ) dx =
√

2π.)
2. f(x) = 11[−a,a](x) et g(x) = 11[−b,b](x)

Exercice 112. (*)Pour tout entier n on définit la fonction gn(x) = (1 −
x2)n11[−1,1](x). On pose an =

∫
R
gn(x) dx et kn = a−1

n gn.

1. Montrer que la suite (an) tend vers 0 et que an ≥ 2
n+1 pour tout entier

n.
2. Soit f une fonction uniformément continue sur R et bornée. Montrer

que f ∗ kn converge uniformément vers f .
3. Soit f une fonction continue à support dans [−1

2 ,
1
2 ]. Montrer que la

restriction de f ∗ kn à [−1
2 ,

1
2 ] est un polynôme de degré ≤ 2n.

4. En déduire le théorème de Weierstrass : Toute fonction continue d’un
intervalle [a, b] dans R est limite uniforme sur [a, b] d’une suite de
polynômes.

Exercice 113. Soit f = 11[− 1
2 , 1

2 ].
1. Déterminer f ∗ f et f ∗ f ∗ f . . . .
2. On note f (∗)1 = f et pour n ≥ 2, f (∗)n = f (∗)(n−1) ∗ f . Vérifier que

pour tout n ≥ 1, f (∗)n ∈ L1(R) et que ∥f (∗)n∥1 = 1.
3. Montrer que pour tout n ≥ 2, f (∗)n est de classe Cn−2.

Exercice 114. (*)Soit E ∈ B(R) tel que 0 < λ(E) < +∞.
1. Montrer que 11E ∗ 11 −E est continue sur R.
2. En déduire que E − E = {x − y / x ∈ E, y ∈ E} est un voisinage de

0.

Exercice 115. Soit f la fonction de R dans lui-même définie par f(x) = e− x2
2

pour x ∈ R.
1. Déterminer la transformée de Fourier de f en remarquant que f̂ est

solution d’une équation différentielle linéaire.
2. Soit A une matrice carrée réelle symétrique d’ordre n définie positive.

Déterminer la transformée de Fourier de la fonction de Rn dans R
définie par f(x) = e−⟨Ax,x⟩ pour x ∈ Rn.

Exercice 116. 1. Soit f ∈ L1(Rn) telle que f ∗ f = 0. Montrer que
f = 0.
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2. Montrer que L1(R) n’a pas d’unité pour la convolution.

Exercice 117. Déterminer la transformée de Fourier de la fonction indica-
trice d’un intervalle [a, b]. Montrer que 11[−1,1] ∗ 11[−1,1] est la transformée de
Fourier d’une fonction de L1(R) qu’on déterminera.

Exercice 118. Calculer la transformée de Fourier de la fonction f de R dans
lui-même définie par f(x) = e−a|x|, pour x ∈ R (où a > 0). En déduire la
transformée de Fourier de la fonction g : x 7→ 1

a2 + x2 .
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Convergence presque sûre, loi
des grands nombres

9.1 Inégalités classiques

9.1.1 Inégalité de Markov
Théorème 94. Soit X une variable aléatoire positive, intégrable. Alors, on
a

∀a > 0 P(X ≥ a) ≤ EX
a
.

Démonstration. Comme X est positive, on a

EX =
∫

Ω
x dP(ω) ≥

∫
{X≥a}

x dP(ω) ≥
∫

{X≥a}
a dP(ω) = aP(X ≥ a).

9.1.2 Inégalité de Tchebytchef
Théorème 95. Soit X une variable aléatoire admettant un moment d’ordre 2.
Alors, on a

∀a > 0 P(|X − EX| ≥ a) ≤ VarX
a2 .

Démonstration.

P(|X − EX| ≥ a) = P(|X − EX|2 ≥ a2)

Il suffit alors d’appliquer l’inégalité de Markov à la variable aléatoire
Y = |X − EX|2. Comme EY = VarX, l’inégalité s’ensuit.

9.2 Convergence presque sûre
Définition : on dit qu’une suite de variables (ou de vecteurs) aléatoires
(Xn)n≥0 converge presque sûrement vers une variable (ou un vecteur) aléa-
toire X lorsqu’il existe un ensemble mesurable Ω′ ⊂ Ω tel que P(Ω′) = 1 et
que

∀ω ∈ Ω′ ⊂ Ω Xn(ω) → X(ω).

133
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On écrit alors Xn
p.s.−−−−→

n→+∞
X.

La convergence presque sûre n’est autre que la convergence presque par-
tout relativement à une mesure de probabilité. On a alors les résultats clas-
siques suivants : si Xn

p.s.−−−−→
n→+∞

X et Yn
p.s.−−−−→

n→+∞
Y , (avec X et Y dans Rd,

d ≥ 1) alors
— ∀a ∈ R aXn

p.s.−−−−→
n→+∞

aX.

— Xn + Yn
p.s.−−−−→

n→+∞
X + Y .

— ⟨Xn, Yn⟩ p.s.−−−−→
n→+∞

⟨X,Y ⟩.
Plus généralement, si X1, . . . , Xn, . . . , X sont à valeurs dans un ouvert O et
que Xn

p.s.−−−−→
n→+∞

X, alors pour toute fonction f continue définie sur O, on a

f(Xn) p.s.−−−−→
n→+∞

f(X).
Il peut être intéressant de remarquer que la convergence presque sûre

d’une suite de vecteurs aléatoires est équivalente à la convergence presque
sûre de chacune des composantes.

9.2.1 Rappels d’analyse
En probabilités, le retour aux ε est très fréquent. Si l’on ne veut pas que

cela devienne trop compliqué, il importe de bien connaître les outils d’analyse
permettant de simplifier les choses.

Pour toute suite (xn)n≥0 de nombres réels, on peut définir

lim
n→+∞

xn = lim
n→+∞

sup
k≥n

xk

et
lim

n→+∞
xn = lim

n→+∞
inf
k≥n

xk.

Ces deux limites existent toujours dans R = R ∪ {−∞; +∞}. La suite (xn)n

converge dans R si et seulement si ces deux limites sont égales. Rappelons
quelques propriétés des limites supérieures.

— Pour x ∈ R

lim
n→+∞

xn = x ⇐⇒ lim
n→+∞

|xn − x| = 0

—

lim
n→+∞

xn ≤ M ⇐⇒ ∀ε > 0 {n : xn ≥ M + ε} est fini (9.1)

lim
n→+∞

xn ≥ M ⇐⇒ ∀ε > 0 {n : xn ≥ M − ε} est infini (9.2)

— En prenant la contraposée de (9.1) et(9.2) , on a

lim
n→+∞

xn > M ⇐⇒ ∃ε > 0 {n : xn ≥ M + ε} est infini

lim
n→+∞

xn < M ⇐⇒ ∃ε > 0 {n : xn ≥ M − ε} est fini
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—
lim

n→+∞
(xn + yn) ≤ lim

n→+∞
xn + lim

n→+∞
yn.

Nous verrons en exercice un exemple où l’inégalité est stricte

9.2.2 Limites supérieures, inférieures d’ensembles
Si (An)n≥0 est une suite d’ensembles, on note

lim
n→+∞

An = ∩
n≥1

∪
k≥n

Ak

et
lim

n→+∞
An = ∪

n≥1
∩

k≥n
Ak.

Ainsi la limite supérieure d’une suite d’ensembles est l’ensemble des points qui
appartiennent à une infinité de ces ensembles, tandis que la limite inférieure
d’une suite d’ensembles est l’ensemble des points qui appartient à tous ces
ensembles à partir d’un certain rang.

Ainsi, dire que {n : Xn(ω) ≥ M−ε} est infini , c’est dire que ω appartient

à lim
n→+∞

{ω : Xn(ω) ≥ M − ε}.

On en déduit

{ lim
n→+∞

Xn ≥ M} = ∩
ε>0

lim
n→+∞

{Xn ≥ M − ε} (9.3)

Par ailleurs, dire que

{n : xn ≥ M + ε} est fini ,

c’est dire qu’à partir d’un certain rang , on a xn < M + ε. Donc si ω est tel

que {n : Xn(ω) ≥ M + ε} est fini , c’est que ω ∈ lim
n→+∞

{Xn < M + ε}. On
en déduit que

{ lim
n→+∞

Xn ≤ M} = ∩
ε>0

lim
n→+∞

{Xn < M + ε} (9.4)

Si on remplace Xn par −Xn et M par −M dans (9.4), on obtient :

{ lim
n→+∞

−Xn ≤ −M} = ∩
ε>0

lim
n→+∞

{−Xn < −M + ε}

Soit
{ lim

n→+∞
Xn ≥ M} = ∩

ε>0
lim

n→+∞
{Xn > M − ε} (9.5)

Et en passant aux complémentaires dans (9.4) et (9.5), on a

{ lim
n→+∞

Xn > M} = ∪
ε>0

lim
n→+∞

{Xn ≥ M + ε} (9.6)
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et
{ lim

n→+∞
Xn < M} = ∪

ε>0
lim

n→+∞
{Xn ≤ M − ε} (9.7)

Si on fait subir à la formule (9.3) les mêmes transformations qu’à (9.4),
on peut obtenir 3 autres formules.

Dans la pratique, comment fait-on si l’on veut montrer que lim
n→+∞

Xn =

M presque sûrement ? Comme vous l’avez deviné, on montre lim
n→+∞

Xn ≥ M

presque sûrement, puis lim
n→+∞

Xn ≤ M presque sûrement Comme la suite

lim
n→+∞

{Xn ≥ M − ε} est monotone en ε, on a

{ lim
n→+∞

Xn ≥ M} = ∩ε>∈Q∗
+ lim

n→+∞
{Xn ≥ M − ε} (9.8)

L’avantage est que l’intersection est maintenant dénombrable. Or, on a le
résultat classique très utile suivant :

Théorème 96. L’intersection d’une famille dénombrable d’événements est
de probabilité 1 si et seulement si chacun des événements est de probabilité
1.

Démonstration. Soit D un ensemble d’indexs dénombrable. (An)n∈D une fa-
mille d’événements indexée par D. On pose A = ∩

n∈D
An. Pour tout n,

A ⊂ An, donc P(A) ≤ P(An). Ainsi si P(A) = 1, on a pour tout n ∈ D
P(An) = 1. Réciproquement, on a

P(Ac) = P ( ∪
n∈D

Ac
n)

≤
∑

n∈D
P(Ac

n)

≤
∑

n∈D
0

Donc P(A) = 1 − P(Ac) = 1 − 0 = 1.

Pour prouver que lim
n→+∞

Xn ≥ M presque sûrement, il suffit donc de

prouver que ∀a < M P( lim
n→+∞

{Xn ≥ a}) = 1

De la même manière, on voit que pour avoir lim
n→+∞

Xn ≤ M presque

sûrement, il suffit donc de prouver que ∀a > M P( lim
n→+∞

{Xn < a}) = 1,

on de manière équivalente que ∀a > M P( lim
n→+∞

{Xn ≥ a}) = 0.

On peut donc énoncer le théorème suivant
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Théorème 97. Soit Xn une suite de variables aléatoires et M un réel. On
suppose que

1. ∀ a < M P( lim
n→+∞

{Xn ≥ a}) = 1

2. ∀ a > M P( lim
n→+∞

{Xn ≥ a}) = 0

Alors

lim
n→+∞

Xn = M presque sûrement.

Le théorème suivant très important en est une application directe

Théorème 98 (Critère fondamental de convergence presque-sûre). La suite
de variables aléatoires Xn converge presque sûrement vers la variable aléatoire
X si et seulement si

∀ε > 0 P( lim
n→+∞

{|Xn −X| ≥ ε}) = 0.

Démonstration. Il suffit d’appliquer le lemme précédent à la suite de variables
aléatoires (|Xn −X|)n≥0, avec M = 0 et a joue le rôle de ε.

9.3 Convergence en probabilité
Définition : On dit que (Xn) converge en probabilité vers X si

∀ε > 0 lim
n→+∞

P(|Xn −X| ≥ ε) = 0.

9.3.1 Comparaison avec les autres modes de conver-
gence

Convergence dans Lp et convergence en probabilité

Théorème 99. La convergence dans Lp (p ≥ 1) implique la convergence en
probabilité

Démonstration.

P(∥Xn −X∥ ≥ ε) = P(∥Xn −X∥p ≥ εp) ≤ E∥Xn −X∥p

εp
.

Convergence presque sûre et convergence en probabilité

Théorème 100. La convergence presque sûre implique la convergence en
probabilité.
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Démonstration. Soit ε > 0. D’après le théorème 98, on a

P( lim
n→+∞

{|Xn −X| ≥ ε}) = 0.

Or, d’après le théorème de continuité séquencielle décroissante, on a

P( lim
n→+∞

{|Xn −X| ≥ ε}) = lim
n→+∞

P( ∪
k≥n

{|Xk −X| ≥ ε})

Comme
0 ≤ P(|Xn −X| ≥ ε) ≤ P( ∪

k≥n
{|Xk −X| ≥ ε}),

on en déduit que
lim

n→+∞
P(|Xn −X| ≥ ε) = 0.

Comme ε est quelconque, on peut dire que Xn converge en probabilité vers
X.

9.3.2 Loi faible des grands nombres
Théorème 101. Soit (Xn)n≥0 une suite de variables aléatoires de même loi,
admettant un moment d’ordre 2 et deux à deux non corrélées.
On pose

Sn =
n∑

k=1
Xk et Mn = 1

n
Sn.

Alors
1. Mn

L2
−−−−→
n→+∞

EX0. On dit que Mn converge en moyenne quadratique
vers EX0.

2. Et donc Mn
P−−−−→

n→+∞
EX0.

Démonstration. EMn = 1
n
ESn = 1

n

n∑
k=1

EXk = 1
n
nEX0 = EX0. Par consé-

quent E|Mn − EX0|2 = VarMn = 1
n2 VarSn. Comme les Xk sont 2 à 2 non

corrélées, on a

VarSn =
n∑

k=1
VarXk = nVarX1.

On a donc
E|Mn − EX0|2 = VarMn = VarX1

n
, (9.9)

qui tend bien vers zéro.

9.4 Lemmes de Borel-Cantelli

9.4.1 Premier lemme de Borel-Cantelli
Théorème 102. Soit (An)n≥1 une suite d’événements observables. Si la série

de terme général P(An) est convergente, alors P( lim
n→+∞

An) = 0.
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Démonstration. On pose Bn = ∪
k≥n

Ak. la suite (Bn) est décroissante, et

l’intersection des (Bn) est, par définition, lim
n→+∞

An. D’après le théorème de

continuité séquentielle décroissante, on a donc

0 ≤ P( lim
n→+∞

An) = lim
n→+∞

P(Bn).

Or
P(Bn) = P( ∪

k≥n
Ak) ≤

∑
k≥n

P(Ak) = rn

Comme rn est le reste d’ordre n d’une série convergente, rn est de limite

nulle, et donc, par comparaison P( lim
n→+∞

An) = 0.

9.4.2 Deuxième lemme de Borel-Cantelli
Le deuxième lemme de Borel-Cantelli est une espèce de réciproque du

premier, dans le cas où les événements considérés sont indépendante. Ici, on
choisit de présenter d’emblée une généralisation du deuxième lemme de Borel-
Cantelli, dûe à Erdös et Renyi (1959). Le théorème classique s’en déduira
aisément.
Théorème 103 (Erdös-Renyi). Soient (An)n≥1 une suite d’évévements.
On pose

Nn =
n∑

k=1
11Ak

et N =
+∞∑
k=1

11Ak

mn =
n∑

k=1
P(Ak) = ENn

On a lim
n→+∞

An = {N = +∞}.

Si
lim

n→+∞
mn = +∞ et lim

n→+∞

VarNn

m2
n

= 0,

alors
P( lim

n→∞
An) = 1.

Démonstration. Pour mn > a, on a

P(N ≤ a) ≤ P(Nn ≤ a)

≤ P(|Nn −mn| ≥ mn − a) ≤ VarNn

(mn − a)2

En faisant tendre n vers +∞, on en déduit que

∀a ∈ N P(N ≤ a) = 0.

Ainsi

P(N < +∞) = P( lim ↑
a→+∞

{N ≤ a}) = lim
a→+∞

P(N ≤ a) = lim
a→+∞

0 = 0.
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Théorème 104 (2ème lemme de Borel-Cantelli). Soit (An)n≥1 une suite
d’événements indépendants. Si la série de terme général P(An) est diver-

gente, alors P( lim
n→+∞

An) = 1.

Démonstration. On va appliquer le théorème précédent : comme les (Ak)k≥1
sont indépendants, leurs indicatrices sont des variables aléatoires indépen-
dantes, et donc

VarNn =
n∑

k=1
Var 11Ak

=
n∑

k=1
P(Ak)(1 − P(Ak) ≤

n∑
k=1

P(Ak) = mn

Ainsi Var Nn

m2
n

= 1
mn

. Comme lim
n→+∞

mn =
+∞∑
k=1

P(Ak) = +∞, le résultat
s’ensuit.

Exercice : La conclusion du 2ème lemme de Borel-Cantelli reste-t-elle
vraie si l’on suppose seulement que les (Ak)k≥1 sont deux à deux indépen-
dants ? Que les (Ak)k≥1 sont négativement corrélés 1 ?

Théorème 105. Soit (Xn)n≥0 une suite convergeant en probabilité vers X.
Alors, il existe une sous-suite Xnk

telle que Xnk

p.s.−−−→
k→∞

X..

Démonstration. On pose n0 = 0, puis, pour k ≥ 1 :

nk = inf{n > nk−1;P(|Xn −X| ≥ 1
k

) ≤ 1
2k

}

À k fixé, P(|Xn − X| ≥ 1
k
) tend vers 0 quand n tend vers l’infini, donc on a

bien pour tout k : nk < +∞.
Maintenant, on a pour tout k ≥ 0 :

P(|Xnk
−X| ≥ 1

k
) ≤ 1

2k

Comme la série de terme général converge 1
2k , le premier lemme de Borel-

Cantelli nous permet d’affirmer que

P( lim
k→∞

{|Xnk
−X| ≥ 1

k
)}) = 0,

ce qui est équivalent

P( lim
k→∞

{|Xnk
−X| < 1

k
)}) = 1,

ce qui veut dire que pour presque tout ω, il existe un k0(ω) tel que

k ≥ k0(ω) =⇒ |Xnk
(ω) −X(ω)| < 1

k
,

ce qui implique bien sûr que Xnk
(ω) tend vers X(ω) pour P-presque tout

ω.
1. c’est à dire que P(Ai ∩ Aj) ≤ P(Ai)P(Aj) pour i ̸= j



9.5. LOI FORTE DES GRANDS NOMBRES 141

9.5 Loi forte des grands nombres

9.5.1 La loi forte des grands nombres
Théorème 106. Soit (Xn)n≥1 une suite de variables aléatoires deux à deux
indépendantes, de même loi µ. On suppose que µ admet un moment d’ordre
1. Alors

X1 + · · · +Xn

n

p.s.−−−−→
n→+∞

EX1.

9.5.2 Probabilités et fréquences asymptotiques
Théorème 107. Soit (An)n≥0 une suite d’événements observables indépen-
dants de même probabilité p. Pour ω dans l’univers Ω On note Nn(ω) le
nombre d’événements qui sont réalisés parmi A1, . . . , An. Ainsi, on a

Nn =
n∑

k=1
11Ak

et fn = 1
n
Nn.

Alors il existe un événement observable Ω̃ ⊂ Ω avec P(Ω̃ ⊂ Ω) = 1 et

∀ω ∈ Ω̃ ⊂ Ω fn(ω) → p.

Démonstration. Il suffit de poser Xk = 11Ak
et d’appliquer le théorème 106.

Xk admet bien un moment d’ordre 1 car 0 ≤ Xk ≤ 1 et l’on a EX1 = P(A1) =
p.
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9.6 Exercices sur la convergence presque sûre

Exercice 119. Soit (Xn)n≥1 une suite de variables aléatoires indépendantes
suivant la loi N (m,σ2). Montrer que la suite X2

1 +···+X2
n

n
convergence presque

sûrement et déterminer sa limite.

Exercice 120. Soit (Xn)n≥1 une suite de variables aléatoires identiquement
distribuées telle qu’il existe α > 0 avec E exp(α|X1|) < +∞.
Montrer que

lim
n→+∞

Xn

(lnn) 3
2

= 0.

Exercice 121. (*)
Soit (Xn)n≥1 une suite de variables aléatoires indépendantes suivant une

loi exponentielle de paramètre 1.

Calculer lim
n→+∞

Xn

ln n
.

Exercice 122. Soit (Xn)n≥1 une suite de variables aléatoires indépendantes
suivant la loi N (0, 1).

1. Calculer lim
n→+∞

Xn√
2 ln n

.

2. On se donne maintenant une deuxième suite (Yn)n≥1 de variables aléa-
toires indépendantes suivant la loi N (0, 1), cette deuxième suite étant
indépendante de la première. Comparer

lim
n→+∞

Xn√
2 lnn

+ lim
n→+∞

Yn√
2 lnn

et lim
n→+∞

(Xn + Yn)√
2 lnn

.

Exercice 123. (*)
Soit (Xn)n≥1 une suite de variables aléatoires indépendantes telles que

pour tout n, Xn suive une loi binomiale B(n, 1
n1,01789 ). Déterminer l’ensemble

des valeurs d’adhérences de la suite (Xn)

Exercice 124. Soit p ∈ [0, 1] et (Un)n≥1 une suite de variables aléatoires
indépendantes suivant la loi uniforme sur [0, 1]. On note Tn le nombre de fois
où le graphe associé à (Un) coupe la droite d’équation y = p avant le temps
n. Dans notre exemple, p = 0.4 et T20 = 8.
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y = p
trajectoire

2015105

1

0.8

0.6

0.4

0.2

0

Montrer que Tn

n
converge presque sûrement et déterminer la limite.

Exercice 125. Soit (Xn)n≥1 une suite de variables aléatoires de Bernoulli
indépendantes de paramètre 1/2. On pose

Mn =
(

2 +Xn 1
1 2 +Xn

)

et
An = Mn ×Mn−1 × . . .M2 ×M1.

1. Montrer que la suite (detAn)1/n converge presque sûrement et déter-
miner la limite.

2. Soit (x, y) ∈ R2\{(0, 0)}. On pose

Yn = An

(
x
y

)

Montrer que

∥Yn∥1/n p.s.−−−−→
n→+∞


√

2 si x+ y = 0√
12 si x+ y ̸= 0

Exercice 126. Soit (Xn)n≥1 une suite de variables aléatoires telles que pour
tout n, Xn suive une loi de Poisson de paramètre λn, où (λn)n≥1 est une
suite tendant vers 0 en l’infini. Montrer que la suite (Yn)n≥1 définie par Yn =
X1X2 . . . Xn est nulle à partir d’un certain rang.

Exercice 127. Soit (Xn)n≥1 une suite de variables aléatoires telles que pour
tout n, Xn suive une loi de Poisson de paramètre λn, avec

+∞∑
n=1

λ2
n < +∞

Montrer que la suite (Xn)n≥1 est presque sûrement bornée.
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Exercice 128. Soit (Xn)n≥1 une suite de variables aléatoires indépendantes
telles que pour tout n, Xn suive une loi de Poisson de paramètre λn, avec

λn = o(lnn)

Montrer que la suite (Yn)n≥1 définie par Yn = X1X2 . . . Xn est nulle à partir
d’un certain rang.

Exercice 129. Soit (Xn)n≥2 une suite de variables aléatoires indépendantes
telle que pour tout n,Xn suive une loi de Poisson de paramètre 2 lnn. Montrer
que

X2X3 . . . Xn
p.s.−−−−→

n→+∞

0 avec probabilité p
+∞ avec probabilité 1 − p

,

où p ∈]0, 1[.

Exercice 130. Soit (Xn)n≥1 une suite de variables aléatoires indépendantes
identiquement distribuées avec E|X1| = +∞.

1. Soit a > 0. Montrer que lim
n→+∞

|Xn|
n

≥ a p.s.

2. On pose Sn = ∑n
k=1 Xk. Montrer que sup

n≥1
|Sn|

n
= +∞ p.s.

Exercice 131. (*)Lemme de Kochen–Stone
1. Inégalité de Paley-Zygmund.

Soit X une variable aléatoire de carré intégrable et d’espérance stric-
tement positive. Montrer que pour tout λ ∈]0, 1[,

P(X > λE[X]) ≥ (1 − λ)2 (EX)2

E[X2]
.

Indication : majorer et minorer E[X11{X≤λ}].
2. Soit (Bn)n une famille d’événements. Montrer que

P
(

lim
n→+∞

Bn

)
≥ lim

n→+∞
P(Bn).

3. Soit (Bn)n≥1 une famille d’événements telle que
+∞∑
n=1

P(Bn) = +∞.

On pose Nn =
n∑

k=1
11Bk

et on rappelle que

{ lim
n→+∞

Bn} = { lim
n→+∞

Nn = +∞}. Montrer que

P
(

lim
n→+∞

Bn

)
≥ lim

n→+∞

(ENn)2

E[N2
n]
.

Ce résultat est le lemme de Kochen–Stone.
4. Que se passe-t-il lorsque les événements Bn sont deux à deux indé-

pendants ?
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Exercice 132. (*)Une application du lemme de Kochen–Stone.
Soient X1, . . . , Xn des variables aléatoires indépendantes identiquement dis-
tribuées, avec P(X1 = 1) = P(X1 = −1) = 1/2. On construit alors la marche
aléatoire simple (Sn)n≥1 en posant Sn = X1 + · · · + Xn. On rappelle les
résultats suivants qui ont été vu précédemment.

— On a l’équivalent en l’infini P(S2n = 0) ∼ 1√
πn

(voir l’exercice ??).

— Pour tout A ∈ Q = ∩
n≥1

σ((Si)i≥n), on a P(A) = 0 ou P(A) = 1 (c’est
le corollaire ?? obtenu comme conséquence de la loi du 0–1 de Hewitt
et Savage).

À la lumière de ces résultats et du lemme de Kochen–Stone vu à l’exercice
précédent, on veut montrer que

P(S2n2 = 0 pour une infinité de valeurs de n) = 1.

1. On pose Bn = {S2n2 = 0} et Nn =
n∑

k=1
11Bk

. Montrer que

E[N2
n] = E[Nn] + 2

n∑
k=2

k−1∑
p=1

P(S2p2 = 0)P(S2(k2−p2) = 0),

puis qu’il existe une constante C telle que

∀n ≥ 1, E[Nn(Nn − 1)] ≤ C
n∑

k=2

k−1∑
p=1

cp,k avec cp,k = 1
p
√
k2 − p2 .

2. On pose sk =
k−1∑
p=1

cp,k. Montrer qu’il existe une constante D telle que

∀k ≥ 2, sk ≤ D
log k
k

.

Indication : on pourra remarquer que pour p ≤ k/2, on a cp,k ≥ ck−p,k.
3. Montrer que

lim
n→+∞

E[N2
n]

(E[Nn])2 < +∞.

4. Conclure.
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Annexe A

Indications

A.1 Exercices sur les compléments
Indication 1 1. Deviner la valeur de la limite supérieure, exhiber une

sous-suite appropriée afin de minorer la limite supérieure, puis majorer
an par une suite convergente.

2. Dans le cas particulier, on peut, comme précédemment, utiliser des
majorations.

3. Dans le cas général, il faut revenir aux définitions.

Indication 2 On peut faire la remarque simple suivante, très utile dans les
problèmes d’inf et de sup : pour a, b dans R

(a = b) ⇐⇒ (∀x ∈ R (x > a) ⇐⇒ (y > a)).

Indication 3 On peut utiliser le résultat de la première question de l’exer-
cice précédent.

Indication 4 1. À partir d’un certain rang, an . . .et bn . . .donc an + bn

. . .
2. On pourra comparer l’ensemble des valeurs d’adhérence de (bn) et

l’ensemble des valeurs d’adhérences de (an + bn).

Indication 5 1. Commencer par remarquer que ukn+r ≤ ukn + ur, puis
procéder par récurrence sur n.

2. Commencer par montrer que pour tout k, lim
n→+∞

un

n
≤ uk

k
.

3. inf
n→+∞

un

n
≤ lim

n→+∞
un

n
≤ lim

n→+∞

un

n
.

4. On pourra considérer un = log |∥An|∥.
5. On pourra considérer un = log |An| et construire une injection de An+p

dans ⊂ An × Ap.

Indication 6 Pour n assez grand, (1 − ε)a ≤ (an)n ≤ (1 + ε)a.

147
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Indication 7 Commencer par montrer que la série de terme général uk di-
verge. A partir de là, on peut remarquer que pour tout i0

1 = lim
N→+∞

N∑
i=i0

(
N∑

k=i

uk)−α,

ce qui donnera les inégalités sur les limites inférieure et supérieure de la suite.

Indication 8 1. On peut faire une comparaison avec une intégrale ou
remarquer que log(n) − log(n− 1) ∼ 1

n
.

2. Dans la somme représentant Sn − f(0)Hn, traiter séparément les k
tels que k/n ≤ α et les autres.

3. Choisir g telle que g(x)
sin x

se prolonge en une fonction continue sur [0, 1].

A.2 Exercices sur la théorie de la mesure
Indication 9 Remarquer que f−1(A) = f−1(A ∩ {0, 1}) = f−1(A ∩ {0}) ∪
f−1(A ∩ {1}).

Indication 10 Poser F ′ = f(Ω) et revenir à la définition d’une tribu engen-
drée par une application.

Indication 11 1. Remarquer que {f < g} = ∪x{f < x < g} et utiliser
la séparabilité de R.

2. Que signifie “A = B” presque partout ?

Indication 12 Pour les deux premières questions, relire le cours, le résultat
est 11

6 . Pour la deuxième question, penser aux sommes de Riemann.

Indication 13 Pour la deuxième question, on pourra d’abord observer que
certaines des conditions des axiomes sont vérifiées sans hypothèse supplé-
mentaire sur f .

Indication 14 On procèdera par double inclusion. On rappelle que si C ⊂ D,
σ(C) ⊂ σ(D).

Indication 15 Q est dense dans R, ainsi chaque réel est limite d’une suite
croissante et d’une suite décroissante.

Indication 16 1. Exprimer C en fonction de A2 et A5.
2. Exprimer B en fonction des (Ap)p∈P .

Indication 17 Pour F fermé de E, on pourra considérer la fonction dF (x) =
inf{d(x, y); y ∈ F}.

Indication 18 1. Vérifier que vous connaissez les définitions des mots
intervenant dans l’énoncé, en particuler la notion de tribu engendrée
par une application et celle mesurabilité par rapport à un couple d’es-
paces mesurés.
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2. Si Y prend les valeurs y1, . . . , yn, on cherchera à écrire Y = f ◦ X,
avec f(x) = ∑n

i=1 yk11Ak
.

3. On peut poser φn(x) = ⌊nx⌋
n

11[0,n](∥x∥) et construire fn telle que fn ◦
X = φn ◦ Y .

Traiter le cas où g est une indicatrice, puis une fonction étagée, puis une
fonction positive,. . .

Indication 19 1. On rappelle que si x ∈ A, tout ouvert contenant x
contient un élément de A.

2. On pourra montrer que pour tout y ∈ O, in existe x ∈ Qxd et r ∈ Q+
∗

avec {x} ⊂ B(y, r) ⊂ O.
3. Considérer la réunion de tous les ouverts de mesure nulle.

A.3 Exercices sur le formalisme probabiliste
Indication 20 On pourra commencer par remplacer un seul élément de la
famille par son complémentaire.

Indication 21 1. Comme ζ est croissante, il suffit de montrer que pour
tout A, il existe s > 1 tel que ζ(s) > A. On pourra revenir aux sommes
finies

2. Paramétrer pN∗ à l’aide d’une famille d’entiers et utiliser le principe
de partition.

3. Tout nombre différent de 1 a un diviseur premier. Penser aux théo-
rèmes de continuité séquentielle des probabilités.

4. Revenir à la définition de l’indépendance.
5. Mettre ensemble les questions précédentes
6. Commencer montrer que pour tout A, au moins une somme partielle

de la série de terme général (− log(1 − 1
pk

)) dépasse A.
7. (a) S’inspirer de la première question et remarquer qu’aucun entier n’a

de diviseur qui le dépasse.
(b) Faire tendre ℓ vers l’infini.

Indication 22 1. On numérote les mathématiciens, et à chaque mathé-
maticien, on asocie le numéro du propriétaire du chapeau qu’il prend.

2. On pourra utiliser le principe de partition.
3. Quel est l’endomorphisme réciproque ?
4. Relire les résultats précédents
5. On pourra remarquer que la série est alternée.

Indication 23 Remarquer qu’une union dénombrable d’événements est de
probabilité nulle si et seulement si chacun est de probabilité nulle.

Indication 24 Utiliser la formule de Bayes.

Indication 25 1. Ad = dN ∩ Ωn.
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2. On déterminera un entier d tel que ∩r
i=1Adi

= Ad.
3. On remarquera que deux nombres sont premiers entre eux si et seule-

ment si ils n’ont pas de diviseur premier commun.
4. Deux méthodes sont possibles : utiliser la formule du crible (formule de

Poincaré) ou utiliser le résultat de l’exercice 1. Cette dernière méthode
est utilisée dans le sujet du capes 2003.

Indication 26 Commencer par choisir clairement l’espace Ω.

Indication 27 On pourra conditionner par la valeur prise par l’ensemble
des trois nombres tirés au sort.

Indication 28 1. Ω = {(x1, . . . , xa+b) ∈ {−→
i ; −→

j }a+b x1 + · · · + xa+b =
a
−→
i + b

−→
j } est un choix possible.

2. Si l’on note I = { le graphe coupe la diagonale.}, on pourra montrer
que

P(I∩{A gagne le premier échange}) = P(I∩{B gagne le premier échange}).

Indication 29 Faire en sorte que le résultat soit nul.

Indication 30 1. On pose n0 = 0, s0 = 0, puis pour k ≥ 0 : nk+1 =
inf{n > nk; sk + un < ℓ} et sk+1 = sk + unk+1 .

2. Utiliser la formule donnant φ(n)/n en fonction de ses facteurs premiers
et utiliser la divergence de la série des inverses des nombres premiers.

A.4 Exercices sur les intégrales
Indication 31 On note fa,b la fonction affine par morceaux, valant 1 avant
a, 0 après b. On peut remarquer que 11]−∞,a] ≤ fa,a+1/n ≤ 11]−∞,a+1/n].

Indication 32 Utiliser la transformation d’Abel.

Indication 33 On pourra montrer qu’il existe une constante A telle que
g ≤ A|f |.

Indication 34 1. Pour tout t dans R, on pourra montrer que l’événe-
ment {Y ≤ t} est mesurable.

2. On pourra montrer que Y (x) = Z(x) pour µ presque tout x.
3. Utiliser le fait que T préserve la mesure µ

Indication 35 1. Vérifier les axiomes.
2. Commencer par le cas où f est étagée.

Indication 36 Utiliser le théorème de convergence monotone.

Indication 37 Utiliser le théorème de convergence dominée.

Indication 38 On pourra prendre A = {f > 0}.
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Indication 39 1. On pourra démontrer que pour n ≥ 1, 0 ≤ log(x+n)
n

≤
1 + x.

2. (1 + x)n ≥ . . .

3. Pour n ≥ 3, 1+nx
(1+x)n ≤ 3

(1+x)2 .

Indication 40 1. Procéder par récurrence.
2. Faire un développement en série.
3. On peut développer avec la formule du binôme d’une part, d’autre

part remarquer que
∫ 1

0
(1 − x)n ln(x) dx =

∫ 1

0
xn ln(1 − x) dx. Une

intégration par partie donne alors le résultat, pourvu que la primitive
soit choisie judicieusement.

Indication 41 Remarquer que log x+ 1
x

≥ 0 et développer ex − 1 en série.

Indication 42 Développer en série et utiliser le théorème de convergence
dominée.

Indication 43 On pourra remarquer que 1
ex−1 = e−x

1−e−x .

Indication 44 On pourra remarquer que | (x log x)2

1+x2 | ≤ 2(x log x)2 sur [0, 1],
développer en série. Le calcul des sommes requiert des intégrations par par-
ties.

Indication 45 Pour l’existence, séparer les problèmes en 0 et l’infini. En-
suite, intégrer par parties.

Indication 46 1. cos2 = 1 − sin2 et intégrer par parties.
2. Calculer W0W1.

Indication 47 1. Appliquer le théorème de convergence dominée.
2. Faire (au moins)un changement de variable.

Indication 48 Faire (au moins)un changement de variable.

Indication 49 1. On pourra écrire
∫+∞

2n xne−x dx =
∫+∞

n (x+n)ne−(n+x) dx.
2. Remarquer que Γ(n+ 1) ∼

∫ 2n
0 xne−x dx, puis faire un changement de

variables affine.
3. On traitera séparément suivant le cas où x > 0 ou x < 0. Dans les

deux, on pourra penser à un développement en série.
4. Utiliser le théorème de convergence dominée.

Indication 50 1. Procéder par récurrence.
2. On pourra remarquer que 1

ex−1 = e−x

1−e−x .
3. Faire un changement de variable.
4. Développer le cosinus en série entière. Faire attention pour intervertir

la somme et l’intégrale.
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Indication 51 1. La convergence se montre classiquement à l’aide d’une
intégration par partie. Pour le reste, on pourra chercher un équivalent
de
∫ (n+1)π

nπ
| sin t|

t
|dt (penser à faire un changement de variable).

2. Voir les théorèmes généraux de régularité du cours.
3. Il faut montrer que F est continue en 0. En réalité, ça ne coute pas

plus cher de montrer que F est continue sur R+. On pourra écrire

F (x) =
∫ 1

0
e−xt sin t

t
dt+

∫ +∞

1
e−xt sin t

t
dt

=
∫ 1

0
e−xt sin t

t
dt+ Im

∫ +∞

1
e(i−x)t 1

t
dt.

Penser à une intégration par parties pour le 2e morceau.

Indication 52 1. Couper l’intégrale en 2. La partie entre 0 et 1 ne pose
pas de difficulté ; pour le reste on pourra faire une intégration par
parties.

2. On pourra commencer par montrer que pour δ > 0,

φ(λ) = φ(δ) exp(
∫ λ

δ

α

i− u
du).

3. Utiliser un théorème de convergence dominée.
4. Faire un changement de variables.

Indication 53 Fubini est ton ami.

Indication 54 Tonelli aussi.

Indication 55 1. Faire une intégration par parties.
2. oui !
3. (a) Faire une intégration par parties.

(b) Pour le premier point, noter que Ψ est continue, de limite 1 en
l’infini. Enfin, appliquer le théorème de convergence dominée.

(c) On peut noter que Ψ(x)/x2 est continue sur R∗
+, avec des limites

finies en +∞ et en 0. Pour la dernière inégalité, on pourra écrire∫ +∞

x

Ψ(λu)
u2 du =

∫ 1

x

Ψ(λu)
u2 du+

∫ +∞

1

Ψ(λu)
u2 du.

(d) Dans un premier temps, dominer |Rλ(x) −R(x)| par une fonction
intégrable. Dans un second temps, pour λ ≤ 1, dominer |Rλ(x) −
R(x)| par une fonction intégrable ne dépendant pas de λ.

4. Utiliser le théorème de Fubini.
5. On pourra écrire∫ +∞

0

Rλ(x)√
x

=
∫ 1

0

Rλ(x)√
x

+
∫ +∞

1

Rλ(x)√
x
,

le premier morceau se traite aisément par convergence dominée, le
deuxième nécessite une intégration par parties comme précédemment.
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Indication 56 Une intégration en x pour commencer donnera

J = 4
+∞∑
k=1

1
(2k + 1)2 .

Pour intégrer en y, noter que 1 + 2xy + y2 = (y + x)2 + (1 − y2) et faire le
changement de variable u = y + x√

1 − x2
.

Indication 57 1. Utiliser une partition de l’espace Rd.
2. On pourra montrer qu’il existe des constantes positives C et D telles

que pour tout x avec ∥x∥2 ≥ 1, on ait

C

∥x∥α
2

≤ 1
Ent(∥x∥∞)α

≤ D

∥x∥α
2
.

3. Le plus simple ici est de montrer que f est C1 par des théorèmes
généraux, puis de calculer la différentielle dans une direction donnée.

4. On pourra utiliser le théorème de C1-difféomorphisme. Pour le calcul
de la différentielle, il pourra être intéressant d’écrire la matrice de Dfx

dans une base orthogonale bien choisie.

Indication 58 On pourra intégrer des fonctions par rapport à la mesure de
comptage et utiliser le théorème de convergence dominée.

Indication 59 1. Remarquer que (S ∩ H−)z = Sz ∩ H−
z . Regarder le

dessin peut aussi aider.
2. Utiliser le théorème de Tonelli (on peut encore regarder le dessin !)
3. On peut utiliser des symétries du modèle pour réduire les calculs.

Ensuite on appliquera Fubini.
4. Noter que S est la réunion disjointe de S ∩H+ et S ∩H−,

A.5 Exercices sur les lois
Indication 60 1. Pensez à discuter suivant les positions relatives de n

et k.
2. Q est dense dans R.
3. Utiliser le principe de partition.
4. Écrire P(D) = 1, avec D bien choisi.

Indication 61 Prendre X et Y deux variables indépendantes suivant cha-
cune une loi de Bernoulli de paramètre 1/2 et poser Z = |X − Y |.

Indication 62 On prend Ω = {0, 1}×{0, 1}, F = P(ω) C = {(0, 0), (0, 1)}, {(0, 0), (1, 0)}}.
P = 1

2(δ0 + δ1) ⊗ 1
2(δ0 + δ1), Q = 1

2(δ(0,0) + δ(1,1))

Indication 63 Traduire les événements considérés en fonction de Y
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Indication 64 Poser x = AM et résoudre l’inéquation.

Indication 65 Dire que le maximum de n nombres ne dépasse pas x, c’est
dire que chacun ne dépasse pas x.

Indication 66 Remarquer que 1 −mn = max(1 −X1, . . . , 1 −Xn).

Indication 67 À k fixé, il faut déterminer les valeurs de X qui sont telles
que Y = k.

Indication 68 Représenter graphiquement les domaines considérés.

Indication 69 1. On pourra montrer que X est T -mesurable, puis que
les Ap sont σ(X)-mesurables.

2. On montrera que l’ensemble cherché est {ω ∈ N;X(ω) = 2×3×5×11}.
3. Le sens direct est le plus simple. Pour la réciproque, remarquer que si
An est T -mesurable, il doit contenir {ω ∈ N∗;X(ω) = X(n)}.

4. On montrera que Am ∩ An = Am∧n.

5. Remarquer que pour p assez grand 1 − 1
p2s ≥ e

− 2
p2s .

Indication 70 1. On pourra montrer que Q est la tribu de queue asso-
ciée à la famille (An)n≥1.

2. Un ensemble d’entiers est infini si et seulement si il contient au moins
un entier plus grand que n’importe quel entier fixé à l’avance. Ainsi,
on pourra montrer que pour tout n0, A = ∩

n≥n0
∪

k≥n
Ak.

Indication 71 Pour la première formule, faire une intégration par parties ;
pour la deuxième, procéder par récurrence.

Indication 72 On pourra écrire e− x2
2 = 1

x
(xe− x2

2 ) afin de procéder à une
intégration par parties.

Indication 73 Si on pose α = 2 arcsin r
1−r

, on doit trouver par exemple

p = 1 − cosα
4

+ α+ sinα
2π

.
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Indication 74 1. On pourra remarquer que pour i ̸= j, Xi −Xj est une
variable à densité.

2. Pour la première égalité, utiliser la question précédente ; ensuite uti-
liser le théorème de transfert.

3. On pourra par exemple calculer P(T,N) sur des ensembles de type
]a,+∞[×]b,+∞[.

Indication 75 Commencer par calculer la fonction de répartition

A.6 Exercices sur les esperances
Indication 76 Si X désigne le nombre de fois où l’on a obtenu le nombre
choisi, le gain est X − 11X=0.

Indication 77 Une probabilité est l’indicatrice d’une espérance.

Indication 78 Interpréter le membre de gauche comme la valeur absolue
d’une covariance.

Indication 79 1. On montrera que E(X − a)2 − σ2 = (m− a)2.
2. Prendre a = a1+an

2 .

Indication 80 Effectuer une transformation d’Abel.

Indication 81 Appliquer le théorème de transfert, et penser à la forme ca-
nonique des polynômes du second degré.

Indication 82 Appliquer le théorème de transfert.

Indication 83 On pourra commencer par supposer que la loi est centrée
(c’est à dire que a + b = 0) et remarquer que |X − Y | ≤ |X| + |Y |). On s’y
ramènera dans le cas général.

Indication 84 Fonction de répartition, ou transformation : vous avez le
choix !

Indication 85 On peut raisonner en termes de loi.

Indication 86 S’inspirer de l’exercice précédent et utiliser une transforma-
tion.

Indication 87 Appliquer l’exercice précédent.

Indication 88 Bien observer que X et Y sont indépendantes.

Indication 89 On pourra observer que l’application (x, y) 7→ ( x√
y/n
, y) réa-

lise un C1-difféomorphisme de R∗ × R∗
+ dans lui même.

Indication 90 Remarquer que tout se passe comme si (X, Y ) suivait la loi
uniforme sur T = {(x, y) ∈ R2; 0 < y < x < 1}.

Si x et y sont solutions réelles de x2−Sx+P = 0, alors |x−y| =
√
S2 − 4P
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Indication 91 1. Identifier la loi de Sn et appliquer le théorème de
transfert.

2. (a) Remarquer que [0, 1] est compact.
(b) Remarquer que

Bn(x)−f(x) =
∫

| Sn
n

−x|≤ε
f(Sn

n
)−f(x) dP+

∫
| Sn

n
−x|>ε

f(Sn

n
)−f(x) dP

Indication 92 Si on note Cx l’ensemble des cases controlées par la dame i,
et C =

d
∪

i=1
Ci, on peut minorer |C| grâce aux inégalités de Bonferroni. Dans

un second temps, on remarquera que si φ est une bijecttion de l’échiquier
dans lui-même, les ensembles C et φ(C) se coupent dès que |C| > n2/2.

Indication 93 1. On prendra Ω = Br({1, . . . , n}).
2. Utiliser les relations entre l’espérance et la queue de distribution, puis

utiliser la relation de récurrence du triangle de Pascal.

Indication 94 1. On pourra remarquer qu’une rotation est une appli-
cation linéaire isométrique.

2. Remarquer que |X − Y | =
√

2U .

Indication 95 1. On trouvera comme variance b(0) + ∑n−1
i=1 2b(i)(1 −

i/n).
2. Remarquer qu’une variance est toujours positive. On peut alors par

exemple appliquer le lemme de Fatou ou procéder de manière plus
élémentaire.

Indication 96 1. Appliquer le théorème de Tonelli et le théorème de
Fubini.

2. Appliquer la question précédente à X = 2n et utiliser l’indépendance
des Xi.

Indication 97 1. Considérer l’application qui échange la coordonnée 1
et la coordonnée i.

2. On pourra remarquer que Xi est une variable de Bernoulli.
3. On pourra remarquer et justifier que si i ̸= j, (X1, X2) a même loi que

(Xi, Xj).
4. Remarquer que Pn s’annule en 0 et en n.
5. Penser à un tirage de boules indiscernables dans une urne.

A.7 Exercices sur les espaces Lp

Indication 98 1. Cherchez un peu plus. . .
2. Découper R en intervalles de longeur 2π.
3. Utiliser des équivalents.
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Indication 99 Étudier d’abord la convergence ponctuelle.

Indication 100 On pourra raisonner par l’absurde.

Indication 101 On pourra utiliser des sous-suites.

Indication 102 Retrousser ses manches (ou équivalents).

Indication 103 Majorer
√

|f 2 + g2| par une fonction intégrable.

Indication 104 Passer à l’intégrale de Riemann.

Indication 105 1. Prendre X = [0, 1] et pour µ la mesure de Lebesgue
sur [0, 1], choisir ensuite fn telle que fn(x) → 0 pour tout x ∈ [0, 1[ et
que l’on ait

∫
fn = 1.

2. Pour p entier s’écrivant p = 2n + k, avec 0 ≤ k < 2n, poser up = k
2n .

Ensuite, poser φn(x) = max(1− n
4 |x|, 0) et finalement fn(x) = φn(x−

un).
3. Symétriser l’exemple trouvé à la première question.

Indication 106 Utiliser l’inégalité de Cauchy-Schwartz.

Indication 107 Utiliser l’inégalité de Hölder.

Indication 108 1. Utiliser l’inégalité de Holder.
2. (a) Considérer l’intégrale

∫
]0,x[ fdλ comme une intégrale de Riemann.

(b) Remarquer que T (f)(x) est bornée et décroit suffisamment vite à
l’infini.

(c) Remarquer que f(x) = T (f)(x)+xT (f)′(x) et faire une intégration
par parties.

(d) Cherchez un peu plus. . .
(e) f = f+ − f−.

3. (a) Pour le premier point, on pourra utiliser l’inégalité de Hölder.
(b) Utiliser la densité des fonctions continues à support compact dans

Lp.

Indication 109 Considérer la suite (gn) définie par gn = |f |q

f
11{|f |≤n} sur

{|f | > 0} et gn = 0 sur {f = 0}) .

A.8 Exercices sur la convolution et Fourier
Indication 110 Si a = 0 ou b = 0, alors ab = 0.

Indication 111 1. Pleins de calculs en perspective. On conseille de com-
mencer par exprimer

∫
exp(−p(x)) dx en fonction de A,B,C, lorsque

p(x) = Ax2 +Bx+ C et A > 0.
2. Commencer par identifier les points où la convolée est nulle.
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Indication 112 1. 1 − x2 ≥ 1 − x pour 0 ≤ x ≤ 1.
2. On pourra montrer que pour tout δ ∈]0, 1[,

f ∗ kn(x) − f(x) ≤ 4(1 − δ2)n

an

∥f∥∞ + ωf (δ).

3. On pourra montrer que

f ∗ kn(x) = 1
an

∫ 1/2

−1/2

(
1 − (x− t)2

)n
f(t) dt.

4. On pourra commencer par le cas où a = −1/4 et b = 1/4.

Indication 113 1. Pour éviter d’oublier des cas, se souvenir que le sup-
port de la convolée est inclus dans la “somme” des supports ; la parité
peut également permettre de simplifier des choses

2. Remarquer que f (∗)n est positive.
3. Procéder par récurrence.

Indication 114 1. Si l’on pose g = 11E ∗ 11 −E, on peut remarquer que
g(x) =

∫
E Tx11Edµ.

2. Remarquer que si g(x) ̸= 0, x ∈ E − E.

Indication 115 1. Ah bah non ! Vous l’avez déjà eue, l’indication.
2. Réduire A dans une base orthonormale.

Indication 116 1. On pourra remarquer que la transformée de Fourier
est injective dans L1(Rn))

2. Utiliser la transformation de Fourier et une fonction bien choisie.

Indication 117 On pourra utiliser la formule d’inversion.

Indication 118 On pourra utiliser la formule d’inversion.

A.9 Exercices sur la convergence presque sûre
Indication 119 Appliquer la loi des grands nombres

Indication 120 Pour tout ε > 0, appliquer le lemme de Borel-Cantelli aux
événements { Xn

(ln n)
3
2
> ε}.

Indication 121 Discuter en fonction de A la nature de la série de terme
général

P( Xn

lnn
> A).

Indication 122 S’inspirer de l’exercice précédent en utilisant un équivalent
pour la queue de la gaussienne.
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Indication 123 Pour une suite à veleurs entières, les valeurs d’adhérences
sont les valeurs qui sont prises une infinité de fois.

Indication 124 On a Tn = ∑n
k=2 11{Un−1<p}∆{Un<p}. On pourra découper Tn

en deux sommes de variables aléatoires indépendantes.

Indication 125 1. Passer au logarithme.
2. Écrire Mn sous la forme Mn = PDnP

−1 et introduire la norme ∥x∥∗ =
∥P−1x∥∞.

Indication 126 On pourra remarquer que pour tout entier n, l’événement
“(Yn)n≥1 est nulle à partir d’un certain rang” contient l’événement {Xn = 0}.

Indication 127 On pourra montrer que Xn ∈ {0, 1} à partir d’un certain
rang.

Indication 128 On pourra montrer que P(Yn ̸= 0) ≤ exp(−
n∑

k=1
exp(−λk)).

Indication 129 On pourra montrer que (Xn)n≥2 ne prend la valeur 1 qu’un
nombre fini de fois. Enfin, on montrera que

1 − p =
+∞∏
n=2

(1 − 1
n2 ).

Indication 130 1. Utiliser le lemme de Borel-Cantelli et le lien série-
intégrale.

2. On pourra commencer par montrer que sup
n≥1

|Xn|
n

= +∞ p.s. .

Indication 131 1. Si on note A = {X > λE[X]}, on pourra noter que

E[X] = E[X11A] + E[X11Ac ] ≤ (E[X2]P(A))1/2 + λE[X].

2. Utiliser le lemme de Fatou.
3. On pourra remarquer que pour tout λ ∈]0, 1[,

{ lim
n→+∞

An} ⊃ { lim
n→+∞

{11An > λP(An)}}.

4. On redémontre le deuxième lemme de Borel–Cantelli.

Indication 132 1. Développer le carré et noter que {X = 0, X + Y =
0} = {X = 0, Y = 0}.

2. On peut remarquer (et démontrer !) que pour p ≤ k/2, cp,k ≥ ck−p,k.
3. On pourra comparer des sommes et des intégrales.
4. Il faut vérifier que l’événement est dans Q, puis montrer grâce à

Kochen-Stone qu’il a une probabilité strictement positive ; enfin conclure
avec Hewitt–Savage.
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